| 研究生: |
任雲懷 Jen, Yun-Huai |
|---|---|
| 論文名稱: |
濺鍍Y2SiO5薄膜電激發光元件結構材料性質之研究 Study of Structure Properties for Y2SiO5 Thin Film Electroluminescent Devices by RF Magnetron Sputtering |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 氧化物螢光層 、交流薄膜電激發光元件 |
| 外文關鍵詞: | ACTFEL devices, oxide phosphor layer |
| 相關次數: | 點閱:41 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗首先利用射頻磁控濺鍍系統成長交流薄膜電激發光元件(ACTFEL devices)之電極層、絕緣層與螢光層。藉由改變成長時的濺鍍功率、基板溫度、氣氛壓力以及退火溫度,期能找出Y2SiO5:Ce氧化物螢光層(oxide phosphor layer)的最佳成長條件。
其次,改變傳統以固態法燒結鈦酸鋇基板的方式,利用刮刀成型法所製備的陶瓷薄片,施以不同燒結曲線來製作組織緻密、表面平坦的鈦酸鋇基板,並運用於薄膜EL元件的製作。
最後以Ta2O5為絕緣層材料,成長單絕緣層與雙絕緣層之Y2SiO5:Ce交流薄膜電激發光元件,期能藉由螢光層與絕緣層之間的界面態增加,進而提升元件的發光特性。
實驗結果顯示,不管是單絕緣層或雙絕緣層製作之EL元件在300V、頻率1kHz的驅動電壓下,均未能有明顯的發光現象。推測其原因應是(1)施加的電壓尚不足以驅動元件發光所致(2)螢光薄膜經退火處理後結構變的不均勻所致(3)螢光薄膜內Ce的含量過高所致。
In the first of this experiment, we study the electrode layer, insulating layer and phosphor layer of ACTFEL devices by RF-magnetron sputter method. To deposit high quality Y2SiO5:Ce oxide phosphor layer, we had changed the substrate temperature, working pressure, sputtering power and annealing temperature, and then found out the optimum deposition condition.
The second, we changed the way of traditional solid-state sintering method to prepare the BTO substrate, in stead of tape coating method to obtain ceramic sheets of dense structure and smooth surface by different sintering temperature treatment.
Finally, we fabricated the Y2SiO5:Ce ACTFEL device of single and double insulating layer structure. By the increase of interface state between insulating layer and phosphor layer is to promote luminant properties of EL devices.
The experimental results show that whenever single or double insulating layer structure, we all couldn’t discover any luminant phenomenon. We infer that reasons should be as following: (1) the voltage is not enough to driving EL devices (2) the structure of phosphor layer is not uniform after annealing treatment (3) the content of Ce atoms is too much in the phosphor layer.
1.Yoshimasa A. Ono, “Electroluminescent displays”, (1995).
2.T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata and M. Yoshida, Digest of 1974 SID International Symposium, (1974), 84.
3.Minami T., Takata S., J SID, (1996), 299.
4.Mueller G., Semiconductors and Semimetals V 65, “Electroluminescence Ⅱ”, (2000).
5.Kim J. H., Holloway R.H., 29th Annu. Appl. Vac. Sci. & Tech.. Symp., (2001).
6.Miyata T., Nakatani T., Minami T., J Lumin., 87-89 (2000), 1183.
7.Minami T., Mat. Res. Soc. Symp. Proce., 558 (2000), 29.
8.P. M. Alt, Proc. SID, 25 (1984), 123.
9.W. E. Howard, IEEE Trans. Electron Device, ED-24 (1977), 903.
10.W. E. Howard, Proc. SID, 18 (1977), 119.
11.S. K. Tiku and G. C. Smith, IEEE Trans. Electron Device, ED-31 (1984), 105.
12.R. C. Alig and S. Bloom, J. Electrochem. Soc., 24 (1977) ,1136.
13.Y. Liu, C. N. Xu, H. Matsui, T. Imamura, T. Watanabe, J Lumin., 87-89 (2000), 1299.
14.V. Bondar, Mat. Sci. and Eng., B69-70 (2000), 505.
15.X. Ouyang, A. H. Kitai, R. Siegele, Thin Solid Films, 254 (1995), 268.
16.Blasse G., Bril A., J. Phys. Chem. Solids, 31 (1970), 707.
17.Harwig T., Kellendonk F., J. Solid State Chem., 24 (1978), 255.
18.Minami T., Nakatani T., Miyata T., J. Vac. Sci. Tech., A18 (2000), 1234.
19.Minami T., Kuroi Y., Miyata T., et al., J. Lumin., 72-74 (1997), 997.
20.Minami T., Takata S., Kuroi Y., et al., J. SID , 4/2 (1996), 53.
21.Minami T., Takata S., Kuroi Y., et al., J. Vac. Sci. Tech., A14 (1996), 1532.
22.Yu C. F., Lin P., J. Mat. Sci. Lett., 17 (1998), 555.
23.Minami T., Yamada H., Kubota Y., et al., Jpn J. Appl. Phys. Part2, 36 (1997), L1191.
24.Xu X. L., Hou Y. B., Xu Z., et al., Jpn Appl. Phys., 39 (2000), 1769.
25.Xu X. L., Hou Y. B., Xu Z., et al., Appl. Phys. Lett., 77 (2000), 672.
26.Bodar V., Vasyliv M., Akselroud L., et al., Electrochem Soc. Proc., V98 (1998), 365.
27.Minami T., MiYata T., Takata S., et al., Jpn J. Appl. Phys. Part2, 30 (1991), L117.
28.Xiao T., Liu G., Kitai A. H., Can J. Phys., 74 (1996), 132.
29.Ouyang X., Kitai A. H., Xiao T., J. Appl. Phys., 79 (1996), 3229.
30.Wang J. G., Tian S. J., Li G. B., et al., J. Electrochem. Soc., 148 (2001), H61.
31.Lewis J. S., Holloway P. H., J. Electrochem. Soc, 147 (2000), 3148.
32.Minami T., Yamazaki M., Miyata T., Jpn J. Appl. Phys. Part2, 40 (2001), L864.
33.Minami T., Kuroi Y., Yamada H., et al., J. SID, 6/1 (1998), 17.
34.Xiao T., Kitai A. H., Liu G., et al., SID Internation Symposiam Digest, (1997), 415.
35.Morishita T., Ichii A., Matsui M., et al., Jpn J. Appl. Phys., 37 (1998), 3992.
36.Pack P. D., Holloway P. H., Mat. Sci. and Eng., R21 (1998), 171.
37.Cho K. G., Kumar D., Holloway P. H., et al., Appl. Phys. Lett., 73 (1998), 3058.
38.Ohmi K., Fujimoto K., Tanaka S., et al., J. Appl. Phys., 78 (1995), 428.
39.Ang W. M., Ph D thesis, Oregon State University, (1996).
40.Xiao T., Kitai A. H., Liu G., et al., Appl. Phys. Lett., 72 (1998), 3356.
41.Jim Y. J., Chung S. M., Jeong Y. H., J. Van. Sci. Tech., A19 (2001), 1095.
42.Minami T., Toda H., Miyata T., J. Vac. Sci. Tech., A19 (2001), 1742.
43.E. Luybrechts, K. Ishizaki and M. Taikata, J. Mat. Sci., 30 (1995), 2463.
44.P. P. Phule, S. H. Risbud, J. Mat. Sci., 25 (1990), 1169.
45.J. Q. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman., J. Am. Ceram. Soc., 79 (1996), 2929.
46.Z. H. Michael, E. Andrew, J. Claudia, D. R. Rodeny, Powder Tech., 3 (2000), 2.
47.H. Yamamura et. al., Ceram. Int., 11 (1985), 17.
48.D. F. K. Hennings, C. Metzmacher, B. S. Schreinemacher, J. Am. Ceram. Soc., 84 (2001), 179.
49.Hillert M., Acta Metall., 13 (1965), 227.
50.Kingery W. D., Bowen H. K., Uhlmann D. R., “Introduction to Ceramics, 2nd ed.”, 461 (1976), Wiley, New York.
51.G. Arlt, D. Hennings, G. de With, J. Appl. Phys., 58 (1985), 1619.
52.Matsuo Y. and Sasaki H., J. Am. Ceram. Soc., 54 (1971), 471.
53.Xue L. A., J. Am. Ceram. Soc., 72 (1989), 1536.
54.Hsien H. L. and Fang T. T., J. Am. Ceram. Soc., 73 (1990), 1566.
55.Lin J. N. and Wu L., J. Am. Ceram. Soc., 72 (1989), 1709
56.Wang C. H. and Wu L., Jpn. J. Appl. Phys., 32 (1993), 2020.
57.Buessem W. R., Cross L. E., Goswami A. K., J. Am. Ceram. Soc., 49 (1966), 33.
58.Martirena H. T. and Burfoot J. C., J. Phys., c7 (1974), 3182.
59.楊錦章, “基礎濺鍍電漿”, 電子發展月刊, 68期 (1983), 13.
60.K. Wasa, “Handbook of Sputter Deposition Technology”, (1992), 98.
61.B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc. N.Y., (1980), Bernhard Wolf, “Handbook of Ion Sources”, CRC. Press. Inc., New York, (1995).
62.B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc. N.Y., (1980), Chap.6.
63.F. Shinoki and A. Itoh, J. Appl. Phys., 46 (1975), 3381.
64.S. Berrh, H. O. Blom, T. Larsson and C. Nender, J. Vac. Sci. Tech., A5 (1987), 202.
65.M. Harsdorff, Thin Solid Films, 116 (1984), 55.
66.田民波, 劉德令, “薄膜科學與技術手冊”上冊, 機械出版社, 14.
67.J. Venables, Rep. Phys., 47 (1984), 399.
68.J. A. Thornton, J. Vac. Sci. Tech., 11 (1974), 666.
69.J. A. Thornton, J. Vac. Sci. Tech., 12 (1975), 830.
70.J. E. Evetts and R. E. Somekh, Thin Solid Films, 174 (1989), 165.