| 研究生: |
陳偉謙 Chen, Wei-chien |
|---|---|
| 論文名稱: |
鋰摻雜氧化鎳薄膜導電性與透光性之研究 Study of Electrical Conductivity and Transparency of Lithium Doped Nickel Oxide Thin Film |
| 指導教授: |
黃文星
Hwang, Weng-sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 濺鍍 、鋰 |
| 外文關鍵詞: | lithium, sputter |
| 相關次數: | 點閱:72 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鎳是具有潛力的p型透明導電膜材料,但是由於氧化鎳的光電性質仍無法於產業中實際應用,故想藉摻雜鋰原子於氧化鎳薄膜之中,及改變薄膜沉積的基板溫度,以改善薄膜透光率、導電性質及穩定性。
本研究以射頻磁控濺鍍,利用氧化鎳陶瓷靶或是碳酸鋰片結合氧化鎳靶之複合靶材,進行薄膜濺鍍沉積,再藉由改變濺鍍時的基板溫度,以得到不同性質之氧化鎳薄膜。接著利用電子微探儀與感應電漿耦合質譜分析儀做成份定量;以二次離子質譜儀進行薄膜縱深成份分析;使用低掠角X光繞射分析及掃瞄式電子顯微鏡進行薄膜結構與結晶性分析;以X光光電子能譜分析薄膜中化學鍵結情況。導電性方面,則利用四點探針、霍爾量測及電性時效裝置得到薄膜電阻率變化,及其中載子濃度與載子遷移率等資訊,並對電穩定性做長時間觀察。而在光學性質方面,則是以紫外光-可見光光譜儀量測不同波長時的薄膜穿透率。
研究結果分析顯示,摻雜鋰於氧化鎳薄膜中最大含量為7.4at%,並且製程中所有薄膜氧原子/金屬原子比值皆大於一。經由XRD結構分析,推論氧原子佔據格隙位置為薄膜氧原子/金屬原子比值大於一的主要因素。濺鍍時升高基板溫度,會使薄膜中的氧原子逐漸脫離,但也會增加鋰離子摻雜量。在導電性質方面,最佳電阻率是在鋰摻雜量為7.4at%,基板溫度200℃時所得之8.4×10-2Ω-cm,而鋰摻雜確實造成載子增加,進而降低電阻率。而電穩定性方面,摻雜鋰與提升基板溫度都有助於減緩電性時效問題,推測是鋰離子與易與水氣中的氫氧根結合,減少了氫氧根與電洞結合的機會。至於光學性質方面,穿透率約在30%~50%,經過計算後的能隙也較氧化鎳塊材為小。由此可知,摻雜鋰雖能改善導電率及電性時效問題,相對的會減低薄膜光學穿透率。
Nickel oxide is regarded as a potential material of p-type transparent conducting oxide. Unfortunately, the optical and electrical performances of nickel films can’t be still applied to industry. Therefore, we try to improve the transparency, conductivity, and electrical stability by doping lithium atoms in nickel oxide thin films and changing the substrate temperature.
In this study, nickel oxide thin films were prepared by NiO target and NiO+Li2CO3 composite target. By changing substrate temperature during thin films deposition, they would exhibit different properties. Then, nickel oxide film compositions were determined by FE-EPMA and ICP-MS. Elemental depth profiles were explored by SIMS analysis. As for structure and crystallinity of nickel oxide films, we used GIAXRD and SEM to characterize them. The chemical bondings of nickel oxide films were investigated by XPS. Four-point probe, Hall measurement and electrical aging equipment were used to obtain resistivity, carrier density, mobility and electrical stability. We also used UV-Vis spectrophotometer to measure the transparency of nickel oxide films accompanied various wavelength.
The experimental results show the content of lithium could reach 7.4at% in nickel oxide thin films, in which the ratio of O/(Ni+Li) are always greater than 1. According to XRD results, it’s suggested interstitial oxygen atoms are dominant factors. Rising substrate temperature would not only make oxygen atoms evaporate from the nickel oxide films, but also increase the amount of dopants. About the electrical performance, the lowest resistivity we have obtained is 8.4×10-2Ω-cm when the content of lithium is 7.4at% and substrate is heating at 200℃ due to the increasing of carrier density by doping lithium in the nickel oxide. It is found electrical aging properties slow down because of increasing lithium content and rising substrate temperature. It’s suggested lithium ions may react with hydroxyl of hydrosphere, and then lower the combinative probability of hydroxyl and electric holes. As for optical properties, the transparency of nickel oxide films is from 30% to 50%. And calculated energy gap is smaller than bulk NiO. In conclusion, conductivity and electrical aging properties are improved by doping, but properties of transparency are decreasing in opposite.
參考文獻
1. B. G. Lewis, D. C. Paine, “Application and processing of transparent conducting oxides”, MRS Bulletin 25(8) (2000) 22.
2. C. C. Pan, G. T. Chen, W. J. Hsu, C. W. Lin, and J. I. Chyi, “Thermal stability improvement by using Pd/NiO/Al/Ti/Au reflective ohmic contacts to p-GaN for flip-chip ultraviolet light-emitting diodes”, Applied Physics Letters, 88 (2006) 062113.
3. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts”, IEEE Photonics Techology Letters 15 (2003) 646.
4. C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, “Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films”, Sensors and Actuators B 108 (2005) 184.
5. A. Martucci, D. Buso, M. D. Monte, M. Guglielmi, C. Cantalini and C. Sada, “Nanostructured sol–gel silica thin films doped with NiO and SnO2 for gas sensing applications”, Journal of Materials Chemistry 14 (2004) 2889.
6. J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, ” NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices”, Nano Letters 6 (2006) 2991.
7. I. M. Chan, F. C. Hong, “Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode”, Thin Solid Films 450 (2004) 304.
8. H. Ohta and H. Hosono, “Transparent oxide optoelectronics”, Materials Today, 7 (2004) 42.
9. J. Bandara, H. Weerasinghe, “Solid-state dye-sensitized solar cell with p-type NiO as a hole collector”, Solar Energy Materials & Solar Cells 85 (2005) 385.
10. J. Bandara, C. M. Divarathne, S. D. Nanayakkara, “Fabrication of n–pjunction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye sensitized solar cells”, Solar Energy Materials & Solar Cells 81 (2004) 429.
11. F. F. Ferreira, M. H. Tabacniks, M. C. A. Fantini, I. C. Faria, A. Gorenstein, “Electrochromic nickel oxide thin films deposited under different sputtering conditions”, Solid State Ionics 86-88 (1996) 971.
12. I. Porqueras, E. Bertran, “Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation”, Thin Solid Films 398 –399 (2001) 41.
13. K. Nakaoka, J. Ueyama, K. Ogura, “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films”, Journal of Electroanalytical Chemistry 571 (2004) 93.
14. P. Puspharajah, S. Radhakrishna, A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, Journal of Materials Science 32 (1997) 3001.
15. S. A. Mahmoud, A. A. Akl, H. Kamal, K. A. Hady, “Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis”, Physica B 311 (2002) 366.
16. A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P. Cronin, D. M. Roberts, R. C. Popowich, C. M. Lampert, “Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films”, Thin solid films 221 (1992) 239.
17. M. Tanaka, M. Mukai, Y. Fujimori, M. Kondoh, Y. Tasaka, H. Baba, S. Usami, “Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection”, Thin Solid Films 281-282 (1996) 453.
18. E. Fujii, A. Tomozawa, H. Torii, R. Takayama, “Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics 35 (1996) L328.
19. E. Fujii, A. Tomozawa, S. Fujii, H. Torii, M. Hattori, R. Takayama, “NaCl-type oxide films prepared by plasma-enhanced metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics 32 (1993) L1448.
20. M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, S. Yamada, “Preparation and electrochromic properties of rf-sputtered NiOx films prepared in Ar/O2/H2 atmosphere”, Japanese Journal of Applied Physics 22 (1994) L6656.
21. Y. M. Lu, W. S. Hwang, J. S. Yang, “Effect of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films”, Surface and Coatings Technology 155 (2002) 54.
22. H. W. Ryu, G. P. Chou, W. S. Lee, J. S. Park, “Preferred orientations of NiO thin films prepared by RF magnetron sputtering”, Journal of Materials Science Letters 39 (2004) 4375.
23. H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films 236 (1993) 27.
24. D. S. Ginley, C. Bright, “Transparent conducting oxides”, MRS Bulletin 25(8) (2000) 15.
25. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, Jr. S. B. Warner, “The science and desigh of engineering materials”, INC. 521 (1995).
26. B. G. Streetman, S. Banerjee, “Solid state electronic devices, 5th edition (2001).
27. N. Ohshima, M. Nakada, Y. Tsukamoto, “Structural and magnetic properties of Ni-O/Ni-Fe bilayer films”, Japanese Journal of Applied Physics 35 (1996) L1585.
28. O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, “Ni-defectivevalue and resistivity of sputtered NiO films”, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1627.
29. WebElementsTM, the periodic table on the WWW, URL: http://www.webelements.com/, 1993-2001 Mark Winter, The University of Sheffield and WebElements Ltd, UK.
30. B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, 3rd edition, Prentice Hall (2001) p.48.
31. I. Hotový, D. Búc, “Characterization of NiO thin films deposited by reactive sputtering”, Vacuum 50 (1998) 41.
32. D. Adler, J. Feinleib., “Electrical and optical properties of narrow-band materials”, Physical Review B 2 (1970) 3112.
33. E. Antolini, “Sintering of LixNi1-xO solid solutions at 1200°C”, Journal of Materials Science 27 (1992) 3335.
34. 楊卓蒼,電感耦合電漿輔助沉積Li-Ni-O薄膜電極及其臨場改質之研究,逢甲大學 材料科學研究所碩士論文,民國九十二年.
35. J. B. Goodenough, D. G. Wickham, and W. J. Croft, “Some magnetic and crystallographic properties of the system Li+xNi++1−2xni+++xO”, Journal of Physics and Chemistry of Solids 5 (1958) 107.
36. J. B. Goodenough, D. G. Wickham, and W. J. Croft, “Some ferrimagnetic properties of the system LixNi1–xO”, Journal of Applied Physics 29 (1958) 382.
37. R. A. Ntara, P. Lavela, J. L. Tirado, E. Zhecheva, R. Stoyanova, “Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes”, Journal of Solid State Electrochemistry 3 (1999) 121-134.
38. I. J. Pickering, J. T. Lewandowski, A. J. Jacibson, and J. A. Goldstone, “A neutron powder diffraction study of the ordering in LixNi1−xO”, Solid State Ionics 53-56 (1992) 405.
39. J. L. Yang, Y. S. Lai, J. S. Chen, “Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering”, Thin Solid Films 488 (2005) 242 – 246.
40. O. Kohmoto, H. Nakagawa, Y. Isagawa, A. Chayahara, “Effect of heat treatment on the oxygen content and resistivity in sputtered NiO films”, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1629.
41. B. A. Reguig, M. Regragui, M. Morsli, A. Khelil, M. Addou, J. C. Bernède, “Effect of the precursor solution concentration on the NiO thin film properties deposited by spray pyrolysis”, Solar Energy Materials & Solar Cells 90 (2006) 1381–1392
42. B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, J. C. Bernède, “Properties of NiO thin films deposited by intermittent spray pyrolysis process”, Applied Surface Science 253 (2007) 4330–4334.
43. Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang, “Properties of nickel oxide thin films deposited by rf reactive magnetron sputtering”, Thin Solid Films 420-421 (2002) 54.
44. T. Miyata, H. Tanaka, H. Sato, T. Minami, “P-type semiconducting Cu2O–NiO thin films prepared by magnetron sputtering”, Journal of Materials Science 41 (2006) 5531–5537.
45. C. F. Windisch, Jr. K. F. Ferris, G. J. Exarhos, “Synthesis and characterization of transparent conducting oxide cobalt-nickel spinel films”, Journal of Vacuum Science & Technology A 19 (2001) 1647.
46. P. Puspharajah, S. Radhakrishna, A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, Journal of Materials Science 32 (1997) 3001.
47. U. S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, “Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties”, Applied Surface Science 252 (2006) 2524–2528.
48. M. Ohring, “Materials science of thin films”, 2nd New York: Academic press (2002).
49. G. H. Yu, F. W. Zhu, C. L. Chai, “X-ray photoelectron spectroscopy study of magnetic films”, Applied Physics A 76 (2003) 45.
50. S. Oswald, W. Brϋckner, “XPS depth profile analysis of non-stoichiometric NiO films”, Surface and Interface Analysis, 36, (2004) 17.
51. 陳璟鋒,P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究,國立成功大學 材料科學及工程學系碩士論文,民國九十三年。
52. S. Tanaka, M. Taniguchi, H. Tanigawa, “XPS and UPS studies on electronic structure of Li2O”, Journal of Nuclear Materials 283-287 (2000) 1405-1408.
53. R. Dedryvère, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J. M. Tarascon, “Contribution of x-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium”, Chemistry of Materials 16 (2004) 1056-1061.
54. Q. H. Wu, A. Thissen, W. Jaegermann, “Photoelectron spectroscopic study of Li oxides on Li over-deposited V2O5 thin film surfaces”, Applied Surface Science 250 (2005) 57–62.
55. N. Kitakatsu, V. Maurice, C. Hinnen, P. Marcus, “Surface hydroxylation and local structure of NiO thin films formed on Ni(111)”, Surface Science 407 (1998) 36-58.
56. M. Schulze, R. Reissner, M. Lorenz, U. Radke, W. Schnurnberger, “Photoelectron study of electrochemically oxidized nickel and water adsorption on defined NiO surface layers”, Electrochimica Acta 44 (1999) 3969-3976.
57. A. Hagfeldt, M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews 95 (1995) 49.
58. M. Grätzel, “Heterogeneous photochemical electron transfer”, CRC Press (1989) 91.
59. L. F. Mattheiss, “Electronic structure of the 3d transition-metal monoxides. I. Energy-band results”, Physical Review B 5 (1972) 290.