簡易檢索 / 詳目顯示

研究生: 呂易錦
Lu, Yi-Chin
論文名稱: 以經驗貝式法建構之常態性檢定
An Empirical Bayesian Approach for Testing Normality
指導教授: 張升懋
Chang, Sheng-Mao
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 42
中文關鍵詞: 貝氏因子訊息矩陣檢定常態性檢定隨機搜尋變數選擇
外文關鍵詞: Bayes factor, information matrix test, normality test, stochastic search variable selection
相關次數: 點閱:88下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多重要的統計方法建立在常態性假設成立的基礎之上。因此,各式各樣的常態性檢定常用來檢驗這些統計方法,避免違反常態性假設。本論文先重新審視一些常用的常態性檢定方法,再提出新的檢定方法。如同訊息矩陣檢定給我們的啟示,本論文提出的檢定統計量是由兩個變異數矩陣之行列式組成的比例式。分子部分是變異數三明治估計式之行列式,常用來建立估計方程式,而分母部分是費雪訊息矩陣的反矩陣之行列式。當樣本數大,且滿足常態性假設的時候,本論文提出的檢定統計量會機率收斂至1。此外,本檢定統計量,也是特定的經驗貝式模型中的貝式因子。再者,本檢定統計量,也可由超值峰態係數以及偏態係數平方值的加權總合所表達。在樣本數大,虛無假設之下,本檢定統計量可用常態分配良好的近似。

    本研究提出的檢定方法,經過了模擬與研究在不同樣本數之下的檢定力表現後,發現在樣本數達100之後,它能夠有良好的表現,不遜於一些目前常用的常態性檢定方法。本研究也用此檢定方法,去檢驗體脂肪百分比預測模型的常態性假設和股票對數收益率之布朗運動模型假設。並整理出本檢定方法與目前常用的常態性檢定方法的檢定結果。

    Many fundamental statistical methods root in normal assumption. Therefore, a variety of normality tests are frequently applied to these methods to prevent normal assumption violation. In this thesis, we first review popular normality tests and then propose a new normality test. The test statistic, as motivated by information matrix test, is the ratio of determinants of two variance matrices. The numerator is the determinant of the sandwich variance formula often used in estimating equation approaches whereas the denominator is the determinant of the inverse of Fisher's information matrix. When the sample size is large and the normal assumption is true, the test statistic converges in probability to 1. Moreover, the test statistic is also the Bayes factor of a particular empirical Bayesian model. Furthermore, the test statistic can be expressed as the weighted sum of the excess kurtosis and the skewness square. Under the null hypothesis and for large sample, the test statistic can be well-approximated by a normal distribution.

    We simulated and studied the size and power of the proposed test and found that it is compatible with some popularly used normality tests when sample size is as large as 100. We also applied the proposed test to examine the normal assumption on the body fat percentage prediction and to examine the Brownian motion assumption on the log-returns of stock prices. And we showed the consequences of the proposed test and popularly used normality tests.

    1 Introduction 1 2 Review 4 2.1 Histogram 4 2.2 ECDF-Largest Distance 5 2.3 ECDF-Quadratic Forms 6 2.4 Moments 7 3 Method 9 3.1 Review of Several Large Sample Properties 9 3.2 Derivation of Empirical Bayes Factor 10 3.3 Proposed Normality Test 12 4 Simulations 13 5 Case studies 29 5.1 Fitting Percentage of Body Fat to Simple Body Measurements 29 5.2 Examining the Brownian Motion Assumption in Derivative Pricing 30 6 Conclusion and Future Work 37 Reference 38 Appendix. R Code for BFT Normality Tests 41

    1.Anderson, T. W. and Darling, D. A. (1952), “Asymptotic Theory of Certain Goodness of Fit Criteria Based on Stochastic Processes", The Annals of Mathematical Statistics, 23, 193-212.

    2.Bailey, C. (1991), The New Fit or Fat. Boston: Houghton-Mifflin.

    3.Cramer, H. (1928), “On the composition of elementary errors", Scandinavian Actuarial Journal, 11, 141-180.

    4.Chipman, H. A., Kolaczyk, E. D. and McCulloch, R. E. (1997), “Adaptive Bayesian wavelet shrinkage", Journal of the American Statistical Association, 92, 1413-1421.

    5.Clyde, M. and George, E. I. (2000), “Flexible empirical
    Bayes estimation for wavelets", Journal of the Royal Statistics Society, Series B, 62(4), 681-698.

    6.D'Agostino, R. B. and Pearson, E. S. (1973), “Tests for departure from normality. Empirical results for the distributions of b2 and (b1)^0.5", Biometrika, 60, 613-622.

    7.D'Agostino, R. B. and Pearson, E. S. (1974), Correction to “Tests for departure from normality. Empirical results for the distributions of b2 and (b1)^0.5", Biometrika, 61, 647.

    8.DiCiccio, T. J., and Efron, B. (1996), “Bootstrap Confidence Intervals", Statistical Science, 11, 189-228.

    9.George, E. I. and Foster, D. P. (2000), “Calibration and empirical Bayes variable selection", Biometrika, 87, 731-747.

    10.Hoff, P. and Wakefield, J. (2012), “Bayesian sandwich posteriors for pseudo-true parameters", arXiv:1211.0087v1.

    11.Huber, P. J. (1967), “The behavior of maximum likelihood estimates under nonstandard conditions", Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221-233.

    12.Jarque, M. C. and Bera, K. A. (1980), “Efficient tests for normality, homoscedasticity and serial independence of regression residuals", Economics Letters, 6, 255-259.

    13.Johnson, M. E., Tietjen, G. L. and Beckman, R. J. (1980), “A new family of probability distributions with applications to Monte Carlo studies", Journal of the American Statistical Association, 75, 276-279.

    14.Kuo, L. and Mallick, B. (1998), “Variable selection for regression models", Sankhya Series B, 60, 65-81.

    15.Lilliefors, H. (1967), “On the Kolmogorov-Smirnov test for normality with mean and variance unknown", Journal of the American Statistical Association, 62, 399-402.

    16.Muller, U. (2013), “Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix", Econometrics, 81, 1805-1849.

    17.Nornadiah (2011), “Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", Journal of Statistical Modeling and Analytics, 2, 21-33.

    18.Ord, J. K. (1968), “The discrete Student's t distribution", Annals of Mathematical Statistics, 39, 1513-1516.

    19.Pearson, K. (1900), “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling", Philosophical Magazine Series 5, 50, 302, 157-175.

    20.Shapiro, S. S. and Wilk, M. B. (1965), “An analysis of variance test for normality (complete samples)", Biometrika, 52, 591-611.

    21.Smith, M. S. and Kohn, R. J. (1996), “Nonparametric regression using Bayesian variable selection", Journal of Econometrics, 75, 317-343.

    22.Steele, M., Hurst, C. and Chaseling, J. (2009), “Evaluating the statistical power of goodness-of-fit tests for health and medicine survey data", Paper presented at The Modelling and Simulation Society of Australia and New Zealand Inc. (MODSIM) and the International Association for Mathematics and Computers in Simulation (IMACS), Cairns, Australia., 192-196.

    23.Stefanski, L. A. and Boos, D. D. (2002), “The calculus of M-estimation." The American Statistician, 56, 29-37.

    24.Stephens, M. A. (1974), “EDF Statistics for Goodness of Fit and Some Comparisons", Journal of the American Statistical Association, 69, 730-737.

    25.Stephens, M. A. (1986), “Tests Based on EDF Statistics", In D'Agostino, R. B. and Stephens, M. A. Goodness-of-Fit Techniques, New York: Marcel Dekker.

    26.Thode, H. C. J. (2002), Testing for Normality, Marcel Dekker, Inc., New York.

    27.Urzua, C. M. (1996), “On the correct use of omnibus tests for normality", Economics Letters, 53, 247-251.

    28.Walker, S. G. (2013), “Bayesian inference with misspeci ed models", Journal of Statistical Planning and Inference, 143, 1621-1633.

    29.White, H. (1982), “Maximum likelihood estimation of misspeci ed models", Econometrica, 50, 1-25.

    30.Zellner, A. (1986), “On Assessing Prior Distributions and Bayesian Regression Analysis with g-prior Distributions", in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, eds., P. K. Goel and A. Zellner, Amsterdam: North-Holland/Elsevier, 233-343.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE