| 研究生: |
吳則嶸 Wu, Ze-Rong |
|---|---|
| 論文名稱: |
探討小鼠巨噬細胞在LPS刺激下其核醣體蛋白表現之變化與功能 Dynamic expression pattern of ribosomal proteins in macrophage under LPS-treatment |
| 指導教授: |
曾大千
Tseng, Ta-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 巨噬細胞 、發炎 、核糖體蛋白 、專門核糖體 |
| 外文關鍵詞: | macrophage, inflammation, ribosomal protein, specialized ribosome |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發炎反應,在生物體內是一種先天性免疫防禦機制,來阻絕外來物和病原體的入侵,在發炎的過程中,巨噬細胞扮演著吞噬病原體和分泌多種細胞因子和趨化因子的角色,而這些細胞因子刺激了整個免疫系統的反應,但是當促發炎的細胞因子不正常釋放而導致的慢性發炎症狀,則是會引發一連串的疾病,像是糖尿病、自體免疫疾病、動脈粥樣硬化、阿茲海默症和癌症等。而在過去的研究,對於發炎基因表現的調控,都著重於發炎基因的後轉錄調控,鮮少人去探討發炎基因的在轉譯下的控制,本篇站在另一個角度,從核糖體調控發炎基因轉譯的方向切入,下了一個假說,認為具有特殊組成的核糖體會專一性地去轉譯一群發炎基因的表現。核糖體的組成分,是由核糖體RNA和核糖體蛋白所組成的,而由先前的研究中發現,不同情況下,核糖體的組成分是會改變的,而稱之為專門核糖體,專門核糖體依照其特殊的組成物,可以辨識特定族群的mRNAs,在生物體內選擇性地轉譯特定RNA,來回應環境的改變。然而,在發炎底下這個系統目前還不大清楚。因此,本篇先是利用生物資訊分析的方式,證實了核糖體蛋白在不同情形下的變動,進一步以實驗來觀察巨噬細胞在LPS刺激的發炎情形下,核糖體蛋白的變化,在發炎刺激下多數的核糖體蛋白其RNA量會受到影響而改變,接著以多核糖體結合基因分析(Polysome profile assay),分離出轉譯活性高的核糖體蛋白RNA,代表其蛋白質表現量有增加,歸納出可能參與在發炎基因調控上的核糖體蛋白。這個發現有助於我們去發掘發炎基因的後轉錄調控機制,並有效地去解決發炎反應所產生的疾病。
Inflammation is a primary response of the organism to the injurious stimuli, and prevent organism from injury by initiating the healing process. However, sustained inflammation can lead to a series of diseases, such as diabetes, obesity, atherosclerosis and even cancers. In the past, numerous studies focused on the transcription regulation of inflammatory gene, included in the NF-B and MAPK signaling pathways. Recently research have discovered that the ‘specialized ribosome’, which has a unique composition, can regulate the translation of a subset of transcripts. Therefore, we hypothesized that the specialized ribosome, which formation during inflammation, can regulate a group of inflammatory genes in macrophages. The ribosome composed of rRNAs and ribosomal proteins (RPs), so we speculated some RPs may up-regulation to form specialized ribosomes under inflammation. However, the mechanism of specialized ribosome in regulating of inflammation response was poorly understood. To identify which RPs may involve in regulating inflammation, we performed bioinformatics analysis includes ESTs database, microarray and NGS data. These data show that RPs are not universal expression upon LPS-treatment, some RPs have significant change in mRNA expression. To further validate this hypothesis, we treated MH-S cell line with LPS and RP mRNAs were quantified by qPCR analysis. In addition, the translation efficiency of RPs upon LPS-treatment was simultaneously observed by polysome profiling assay. Finally, we classified a cluster of RPs that possibly involved in regulation of inflammation. This finding may uncover a new posttranscriptional mechanism in regulating inflammation and important to resolve inflammation.
1. Schmeing, T.M. and V. Ramakrishnan, What recent ribosome structures have revealed about the mechanism of translation. Nature, 2009. 461(7268): p. 1234-42.
2. Wimberly, B.T., et al., Structure of the 30S ribosomal subunit. Nature, 2000. 407(6802): p. 327-39.
3. Ban, N., et al., The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 2000. 289(5481): p. 905-20.
4. Yusupov, M.M., et al., Crystal structure of the ribosome at 5.5 A resolution. Science, 2001. 292(5518): p. 883-96.
5. Jenner, L., et al., Crystal structure of the 80S yeast ribosome. Curr Opin Struct Biol, 2012. 22(6): p. 759-67.
6. Klinge, S., et al., Atomic structures of the eukaryotic ribosome. Trends Biochem Sci, 2012. 37(5): p. 189-98.
7. Ben-Shem, A., et al., The structure of the eukaryotic ribosome at 3.0 A resolution. Science, 2011. 334(6062): p. 1524-9.
8. Klinge, S., et al., Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science, 2011. 334(6058): p. 941-8.
9. Melnikov, S., et al., One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol, 2012. 19(6): p. 560-7.
10. Rabl, J., et al., Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science, 2011. 331(6018): p. 730-6.
11. Kressler, D., E. Hurt, and J. Bassler, Driving ribosome assembly. Biochim Biophys Acta, 2010. 1803(6): p. 673-83.
12. Xue, S. and M. Barna, Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol, 2012. 13(6): p. 355-69.
13. Baxter-Roshek, J.L., A.N. Petrov, and J.D. Dinman, Optimization of ribosome structure and function by rRNA base modification. PLoS One, 2007. 2(1): p. e174.
14. Jack, K., et al., rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell, 2011. 44(4): p. 660-6.
15. Schafer, T., et al., Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 2006. 441(7093): p. 651-5.
16. Martin-Marcos, P., A.G. Hinnebusch, and M. Tamame, Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol, 2007. 27(17): p. 5968-85.
17. Ferreira-Cerca, S., et al., Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell, 2007. 28(3): p. 446-57.
18. Peltz, S.W., et al., Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Mol Cell Biol, 1999. 19(1): p. 384-91.
19. Rhodin, M.H., R. Rakauskaite, and J.D. Dinman, The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Mol Genet Genomics, 2011. 285(6): p. 505-16.
20. Aitken, C.E. and J.R. Lorsch, A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol, 2012. 19(6): p. 568-76.
21. Gilbert, W.V., Functional specialization of ribosomes? Trends Biochem Sci, 2011. 36(3): p. 127-32.
22. Moll, I. and H. Engelberg-Kulka, Selective translation during stress in Escherichia coli. Trends Biochem Sci, 2012. 37(11): p. 493-8.
23. Byrne, M.E., A role for the ribosome in development. Trends Plant Sci, 2009. 14(9): p. 512-9.
24. Mauro, V.P. and G.M. Edelman, The ribosome filter redux. Cell Cycle, 2007. 6(18): p. 2246-51.
25. Mauro, V.P. and G.M. Edelman, The ribosome filter hypothesis. Proc Natl Acad Sci U S A, 2002. 99(19): p. 12031-6.
26. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5.
27. Calvo, S.E., D.J. Pagliarini, and V.K. Mootha, Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7507-12.
28. Kozak, M., Initiation of translation in prokaryotes and eukaryotes. Gene, 1999. 234(2): p. 187-208.
29. Hui, A. and H.A. de Boer, Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A, 1987. 84(14): p. 4762-6.
30. Moll, I., et al., Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res, 2004. 32(11): p. 3354-63.
31. Kaberdina, A.C., et al., An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell, 2009. 33(2): p. 227-36.
32. Delvillani, F., et al., S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res, 2011. 39(17): p. 7702-15.
33. Vesper, O., et al., Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell, 2011. 147(1): p. 147-57.
34. Zhang, J., Y. Zhang, and M. Inouye, Characterization of the interactions within the mazEF addiction module of Escherichia coli. J Biol Chem, 2003. 278(34): p. 32300-6.
35. Amitai, S., et al., Escherichia coli MazF leads to the simultaneous selective synthesis of both "death proteins" and "survival proteins". PLoS Genet, 2009. 5(3): p. e1000390.
36. Lasda, E.L. and T. Blumenthal, Trans-splicing. Wiley Interdiscip Rev RNA, 2011. 2(3): p. 417-34.
37. Gao, H., et al., The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A, 2005. 102(29): p. 10206-11.
38. Balasubramanian, S., et al., Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol, 2009. 10(1): p. R2.
39. Kellis, M., B.W. Birren, and E.S. Lander, Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 2004. 428(6983): p. 617-24.
40. Komili, S., et al., Functional specificity among ribosomal proteins regulates gene expression. Cell, 2007. 131(3): p. 557-71.
41. Barakat, A., et al., The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol, 2001. 127(2): p. 398-415.
42. Weijers, D., et al., An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development, 2001. 128(21): p. 4289-99.
43. Marygold, S.J., et al., The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol, 2007. 8(10): p. R216.
44. Kearse, M.G., A.S. Chen, and V.C. Ware, Expression of ribosomal protein L22e family members in Drosophila melanogaster: rpL22-like is differentially expressed and alternatively spliced. Nucleic Acids Res, 2011. 39(7): p. 2701-16.
45. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
46. Tracy, R.P., Inflammation in cardiovascular disease: cart, horse, or both? Circulation, 1998. 97(20): p. 2000-2.
47. Ross, R., Atherosclerosis--an inflammatory disease. N Engl J Med, 1999. 340(2): p. 115-26.
48. Akiyama, H., et al., Inflammation and Alzheimer's disease. Neurobiol Aging, 2000. 21(3): p. 383-421.
49. Langrish, C.L., et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005. 201(2): p. 233-40.
50. Wellen, K.E. and G.S. Hotamisligil, Inflammation, stress, and diabetes. J Clin Invest, 2005. 115(5): p. 1111-9.
51. Serbina, N.V., et al., Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008. 26: p. 421-52.
52. Serbina, N.V. and E.G. Pamer, Coordinating innate immune cells to optimize microbial killing. Immunity, 2008. 29(5): p. 672-4.
53. Shi, C. and E.G. Pamer, Monocyte recruitment during infection and inflammation. Nat Rev Immunol, 2011. 11(11): p. 762-74.
54. Underhill, D.M. and H.S. Goodridge, Information processing during phagocytosis. Nat Rev Immunol, 2012. 12(7): p. 492-502.
55. DiPietro, L.A., Wound healing: the role of the macrophage and other immune cells. Shock, 1995. 4(4): p. 233-40.
56. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8.
57. Kumar, S., J. Boehm, and J.C. Lee, p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov, 2003. 2(9): p. 717-26.
58. Wang, J.G., et al., LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation. J Immunol, 2006. 176(4): p. 2105-13.
59. Carballo, E., W.S. Lai, and P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 1998. 281(5379): p. 1001-5.
60. Warner, J.R. and K.B. McIntosh, How common are extraribosomal functions of ribosomal proteins? Mol Cell, 2009. 34(1): p. 3-11.
61. Wool, I.G., Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996. 21(5): p. 164-5.
62. Lindstrom, M.S., Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun, 2009. 379(2): p. 167-70.
63. Muhl, H. and J. Pfeilschifter, Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int Immunopharmacol, 2003. 3(9): p. 1247-55.
64. Duffield, J.S., The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond), 2003. 104(1): p. 27-38.
65. Poddar, D., et al., An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. J Immunol, 2013. 190(7): p. 3600-12.
66. Mukhopadhyay, R., et al., The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci, 2009. 34(7): p. 324-31.
67. Anderson, P., Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol, 2010. 10(1): p. 24-35.
68. Vallabhapurapu, S. and M. Karin, Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol, 2009. 27: p. 693-733.
69. Lenardo, M.J. and D. Baltimore, NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell, 1989. 58(2): p. 227-9.
70. Grilli, M., J.J. Chiu, and M.J. Lenardo, NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol, 1993. 143: p. 1-62.
71. Wan, F., et al., Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell, 2007. 131(5): p. 927-39.
72. Horos, R., et al., Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood, 2012. 119(1): p. 262-72.
73. Kondrashov, N., et al., Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell, 2011. 145(3): p. 383-97.
74. Deschamps, J. and J. van Nes, Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development, 2005. 132(13): p. 2931-42.
75. Stekel, D.J., Y. Git, and F. Falciani, The comparison of gene expression from multiple cDNA libraries. Genome Res, 2000. 10(12): p. 2055-61.
76. Nicot, N., et al., Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot, 2005. 56(421): p. 2907-14.
77. Bamias, G., et al., Comparative study of candidate housekeeping genes for quantification of target gene messenger RNA expression by real-time PCR in patients with inflammatory bowel disease. Inflamm Bowel Dis, 2013. 19(13): p. 2840-7.
78. Marchal, E., et al., Sequencing and validation of housekeeping genes for quantitative real-time PCR during the gonadotrophic cycle of Diploptera punctata. BMC Res Notes, 2013. 6: p. 237.
79. Wang, M., Y. Hu, and M.E. Stearns, RPS2: a novel therapeutic target in prostate cancer. J Exp Clin Cancer Res, 2009. 28: p. 6.
80. Brown, V., et al., Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell, 2001. 107(4): p. 477-87.
81. Arava, Y., et al., Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3889-94.
82. de Las Heras-Rubio, A., et al., Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev, 2013.
83. Lindstrom, M.S. and Y. Zhang, Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem, 2008. 283(23): p. 15568-76.
84. Ruggero, D. and P.P. Pandolfi, Does the ribosome translate cancer? Nat Rev Cancer, 2003. 3(3): p. 179-92.
85. Artero-Castro, A., et al., Rplp1 bypasses replicative senescence and contributes to transformation. Exp Cell Res, 2009. 315(8): p. 1372-83.
86. Chang, T.W., et al., Ribosomal phosphoprotein P0 interacts with GCIP and overexpression of P0 is associated with cellular proliferation in breast and liver carcinoma cells. Oncogene, 2008. 27(3): p. 332-8.
87. Li, C., et al., Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells. Mol Cell Biochem, 2012. 370(1-2): p. 127-39.
88. Bee, A., et al., siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One, 2011. 6(7): p. e22672.
89. Ingolia, N.T., et al., Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 2009. 324(5924): p. 218-23.
90. Mazumder, B., et al., Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell, 2003. 115(2): p. 187-98.
91. Wan, F., et al., IKKbeta phosphorylation regulates RPS3 nuclear translocation and NF-kappaB function during infection with Escherichia coli strain O157:H7. Nat Immunol, 2011. 12(4): p. 335-43.
92. Landry, D.M., M.I. Hertz, and S.R. Thompson, RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev, 2009. 23(23): p. 2753-64.
93. Nishiyama, T., et al., Eukaryotic ribosomal protein RPS25 interacts with the conserved loop region in a dicistroviral intergenic internal ribosome entry site. Nucleic Acids Res, 2007. 35(5): p. 1514-21.
94. Lee, A.S., R. Burdeinick-Kerr, and S.P. Whelan, A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc Natl Acad Sci U S A, 2013. 110(1): p. 324-9.
95. Schnell, M.J., et al., The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol, 1996. 70(4): p. 2318-23.
96. Fleischer, T.C., et al., Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev, 2006. 20(10): p. 1294-307.
97. Colon-Ramos, D.A., et al., Direct ribosomal binding by a cellular inhibitor of translation. Nat Struct Mol Biol, 2006. 13(2): p. 103-11.
98. Fuchs, G., et al., Proteomic analysis of ribosomes: translational control of mRNA populations by glycogen synthase GYS1. J Mol Biol, 2011. 410(1): p. 118-30.
99. Nilsson, J., et al., Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep, 2004. 5(12): p. 1137-41.
100. Jannot, G., et al., The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep, 2011. 12(6): p. 581-6.
101. Baum, S., et al., Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochem J, 2004. 380(Pt 3): p. 823-30.
102. Gasch, A.P., et al., Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell, 2000. 11(12): p. 4241-57.
103. Halbeisen, R.E. and A.P. Gerber, Stress-dependent coordination of transcriptome and translatome in yeast. PLoS Biol, 2009. 7(5): p. e1000105.
104. Bevort, M. and H. Leffers, Down regulation of ribosomal protein mRNAs during neuronal differentiation of human NTERA2 cells. Differentiation, 2000. 66(2-3): p. 81-92.