簡易檢索 / 詳目顯示

研究生: 楊艾倫
Yang, Ai-Lun
論文名稱: 運動訓練對於高膽固醇兔主動脈血管功能異常影響的時程
Effects of Exercise Training on the Vascular Dysfunction in Hypercholesterolemic Rabbit Aortas at Different Time Periods
指導教授: 陳洵瑛
Chen, Hsiun-Ing
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 88
中文關鍵詞: 高膽固醇運動訓練兔主動脈
外文關鍵詞: rabbit thoracic aorta, hypercholesterolemia, exercise
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈粥狀硬化是一種和慢性發炎相關的血管病變,在它發展的病程中,內皮細胞功能異常被認為是血管病變的開始。在動脈粥狀硬化發生的初期,會產生血管舒張反應降低和黏著分子表現量增加等的情形。之前的研究報告顯示,規律的運動可以降低動脈粥狀硬化的發生率,引起動脈粥狀硬化病程的逆行,甚至能夠增進冠狀動脈疾病病人血管內皮細胞的功能。我們和其他的研究者也指出,在正常或高血壓的動物,運動訓練能夠增加血管內由促效劑引起的一氧化氮的產生,以及增進內皮細胞引起的血管放鬆作用。由此得知,藉由運動訓練可以促進血管內皮細胞的功能,運動可以視為改善生活型態的方式之一。然而,運動如何對抗動脈粥狀硬化的保護作用,以及其背後的調控機轉仍不甚清楚。本研究目的,是去探討在不同的時間點,由高膽固醇引起的動脈粥狀硬化病程之血管變化情形,以及進一步探討運動訓練所引起的保護作用,我們將同時給予實驗動物高膽固醇飲食和運動訓練,分別在二、四、六、八週之後評估其血管功能的變化。我們的實驗設計,是將公的紐西蘭大白兔隨機分成四組,分別是:正常飲食控制組、高膽固醇飲食控制組、正常飲食訓練組和高膽固醇飲食訓練組。給予高膽固醇飲食組別的動物,是餵食含有百分之二高膽固醇的兔飼料,在二、四、六、八之週後引起其動脈粥狀硬化的發生;而給予運動訓練組別的動物,則是給予和高膽固醇飲食相同時程的運動訓練,在跑步機上以每小時0.88公里的速度,漸進地增加跑步時間,直至每天跑步三十至六十分鐘,每週跑步五天。在實驗結束後,取下牠們的胸主動脈做血管功能性和免疫組織化學的分析。結果發現:1) 高膽固醇飲食大於二週後,會產生血清中總膽固醇濃度和低密度脂蛋白濃度明顯增加的情形,而且在兔子胸主動脈,也發現由乙醯膽鹼誘導的血管舒張反應變差。而後者在二至六週的運動訓練介入後有顯著改善的現象; 2) 給予慢性運動八週後,發現在正常飲食的組別,運動訓練可明顯增進其胸主動脈由乙醯膽鹼誘導的血管舒張反應; 但是在高膽固醇飲食的組別,運動訓練只能部分回復其血管的功能; 3) 在胸主動脈,高膽固醇飲食及運動訓練對於影響乙醯膽鹼誘導血管舒張反應的作用,主要是由於改變血管內皮細胞衍生的一氧化氮及過極化因子的釋出; 4) 對胸主動脈而言,二至八週飲食和運動的介入,並不影響由SNP或A23187所誘導的血管舒張反應; 5) 高膽固醇飲食大於四週後,在胸主動脈發現有廣泛性脂肪堆積的情形,以及血管的黏著分子,如P-selectin、VCAM-1等,和MCP-1及iNOS的蛋白質表現量增加的情形; 而給予運動訓練可以有效抑制前述變化的產生。基於這些研究發現,我們得到的結論是:只要在血管未受到嚴重的傷害時,藉由運動訓練的介入,可以改善動脈粥狀硬化血管功能異常的情形。

    Atherosclerosis is a cardiovascular disease associated with chronic inflammation. Endothelial dysfunction has been proposed to be the initial event during the progression of atherosclerosis. In the early stage of atherogenesis, the vasodilating response is impaired and the expression of adhesion molecules is upregulated. Previous studies have indicated that regular exercise reduces incidence of atherosclerosis, causes regression of atherosclerosis, and even corrects endothelial function in patients with coronary artery disease. We and other investigators have reported that exercise increases the agonist-stimulated NO release and enhances endothelium-dependent vasodilatation in vessels of normal or hypertensive animals. It is likely that exercise is one of the lifestyle modifications, which can improve endothelial function. However, the underlying mechanisms of the exercise-induced protective effect against atherosclerosis are still unknown. To study the time course in the progression of atherosclerotic vascular changes induced by hypercholesterolemia and the correcting effects of exercise training in rabbits, vascular function of thoracic aortas after 2, 4, 6, or 8 weeks of high cholesterol diet and/or exercise interventions was evaluated. Male New Zealand White rabbits were divided into 4 groups; i.e., normal diet control, high cholesterol diet control, normal diet with exercise, and high cholesterol diet with exercise. Animals in high cholesterol diet groups were fed 2% cholesterol rabbit chow for 2, 4, 6, or 8 weeks to induce atherosclerosis. Those in exercise groups ran on a treadmill at the speed of 0.88 km/h for up to 30-60 min/d, 5 d/wk for the same period of time as the diet intervention. Thoracic aortas were then isolated for functional and immunohistochemical analyses. We found that 1) high-cholesterol diet feeding for > 2 weeks increased serum concentrations of total cholesterol and LDL, and impaired acetylcholine (ACh)-evoked vasorelaxation in rabbit thoracic aortas. The latter could be reversed after 2-6 weeks of exercise intervention; 2) chronic exercise for 8 weeks significantly enhanced ACh-induced vasorelaxation in aortas of normal diet groups, whereas only partially reversed vascular function in aortas of high-cholesterol diet groups; 3) the effects of diet and exercise on ACh-evoked vasorelaxation in aortas were mainly due to alterations in the release of NO and endothelium-derived hyperpolarization factor; 4) sodium nitroprusside- or A23187-induced vasorelaxation in aortas was not affected after 2-8 weeks of diet and/or exercise interventions; 5) high-cholesterol diet feeding for > 4 weeks caused extensive lipid deposition and increased protein expression of P-selectin, VCAM-1, MCP-1 and iNOS in aortas, which could be largely reduced by chronic exercise. Based on these findings, we conclude that exercise intervention can ameliorate vascular dysfunction in atherosclerosis, as long as the vessels are not severely damaged.

    Abstract ………………………………………………………....... 1 Abstract in Chinese …………………………………………...... 3 Introduction …………………………………………………....... 5 Materials ……………………………………………………....... 11 I. Animal diet ……………………………………………........ 11 II. Preparation of drugs …….………………………......... 11 Methods ………………………………………………………....... 18 I. Animals and diet feeding ………………………............18 II. Exercise training protocol ……………………….........18 III. Determination of serum lipid profiles ………….......19 IV. Assay of citrate synthase activity ……………………...20 V. Examination of lipid deposition in blood vessels …... 21 VI. Evaluation of vasodilating responses ……………….... 21 VII. Immunohistochemical studies of adhesion molecules (i.e. P-selectin and VCAM-1), MCP-1 and iNOS in aortas …...... 23 VIII. Statistical analysis ………………………………….....26 Results …………………………………………………………......27 I. Serum lipid profile ……………………………………...... 27 II. Citrate synthase activity ………………………………... 27 III. Oil red O staining …………………………………........28 IV. Vasodilating responses …………………………….........29 V. Roles of endothelium-derived relaxing factors in the diet or exercise-altered ACh responses of thoracic aortas …….30 VI. Immunostaining of adhesion molecules, MCP-1 and iNOS proteins in the thoracic aortas ……………………..........33 Discussion ……………………………………………………….....35 References ……………………………………………………….....48 Tables …………………………………………………………….....61 Figures …………………………………………………………......69 Appendix ……………………………………………………….......86 Publication ………………………………………………………....88

    1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801-809.
    2. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999; 340: 115-126.
    3. Busse R, Fleming I. Endothelial dysfunction in atherosclerosis. J Vasc Res. 1996; 33: 181-194.
    4. Lusis AJ. Atherosclerosis. Nature. 2000; 407: 233-241.
    5. Parthasarathy S, Steinberg D, Witztum JL. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med. 1992; 43: 219-25.
    6. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999; 103: 1597-1604.
    7. Williams KJ, Tabas Ira. The response-to-retention hypothesis of early
    atherogenesis. Arterioscler Thromb Vasc Biol. 1995; 15: 551-561.
    8. Boren J, Gustafsson M, Skalen K, Flood C, Innerarity TL. Role of extracellular retention of low density lipoproteins in atherosclerosis.Curr Opin Lipidol. 2000; 11: 451-456.
    9. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002; 417: 750-754.
    10. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988; 333: 664-666.
    11. Boger RH, Bode-Boger SM, Frolich JC. The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis. 1996; 127: 1-11.
    12. Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 1997; 18(Suppl E): E19-E29.
    13. Jayakody L, Senaratne M, Thomson A, Kappagoda T. Endothelium- dependent relaxation in experimental atherosclerosis in the rabbits. Circ Res. 1987; 60: 251-264.
    14. Cooke JP, Andon NA, Girerd XJ, Hirsch AT, Creager MA. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation. 1991; 83: 1057-1062.
    15. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90: 1168-1172.
    16. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994; 23(6 Pt 2): 1121-1131.
    17. Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation. 1998; 97: 2494-2498.
    18. Paniagua OA, Bryant MB, Panza JA. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: diminished activity in hypertensive and hypercholesterolemic patients. Circulation. 2001; 103: 1752-1758.
    19. Buttery LD, Springall DR, Chester AH, Evans TJ, Standfield EN, Parums DV, Yacoub MH, Polak JM. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest. 1996; 75: 77-85.
    20. Behr D, Rupin A, Fabiani J-N, Verbeuren TJ. Distribution and prevalence of inducible nitric oxide synthase in atherosclerotic vessels of long-term cholesterol-fed rabbits. Atherosclerosis. 1999; 142: 335-344.
    21. Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in apo-E deficient mice. Circulation. 2000; 101: 2290-2295.
    22. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb. 1993; 13: 197-204.
    23. Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, Cybulsky MI. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res. 1999; 85: 199-207.
    24. Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest. 1991; 88: 1121-1127.
    25. Chen YL, Chang YJ, Jiang MJ. Monocyte chemotactic protein-1 gene and protein expression in atherogenesis of hypercholesterolemic rabbits. Atherosclerosis. 1999; 143: 115-23.
    26. Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 1999; 99: 963-72.
    27. Laughlin MH, McAllister RM. Exercise training-induced coronary vascular adaptation. J Appl Physiol. 1992; 73: 2209-2225.
    28. Chandrashekhar Y, Anand IS. Exercise as a coronary protective factor. Am Heart J. 1991; 122: 1723-1739.
    29. Kaplan NM. Long-term effectiveness of nonpharmacological treatment of hypertension. Hypertension. 1991; 18(Suppl I): I153-I160.
    30. Hardman AE. Exercise in the prevention of atherosclerotic, metabolic and hypertensive diseases: a review. J Sports Sci. 1996; 14: 201-218.
    31. Fletcher GF. The antiatherosclerotic effect of exercise and development of an exercise prescription. Cardiol Clin. 1996; 14: 85-95.
    32. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, Brand RJ. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998; 280: 2001-2007.
    33. Schuler G, Hambrecht R, Schlierf G, Niebauer J, Hauer K, Neumann J, Hoberg E, Drinkmann A, Bacher F, Grunze M, Kubler W. Regular physical exercise and low-fat diet: effects on progression of coronary artery disease. Circulation. 1992; 86: 1-11.
    34. Hambrecht P, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000; 342: 454-460.
    35. Verhaar MC, Rabelink TJ. Endothelial function: strategies for early intervention. Cardiovas Drugs Ther. 1998; 12(suppl 1): 125-134.
    36. Chen HI, Chiang IP, Jen CJ. Exercise training increases acetylcholine- stimulated endothelium-derived nitric oxide release in spontaneously hypertensive rats. J Biomed Sci. 1996; 3: 454-460.
    37. Chen HI, Li HT. Physical conditioning can modulate endothelium- dependent vasorelaxation in rabbits. Arterioscler Thromb. 1993; 13: 852-856.
    38. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium- dependent vasoreactivity of rat abdominal aorta. J Appl Physiol. 1993; 75: 1354-1363.
    39. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994; 74: 349-353.
    40. Woodman CR, Muller JM, Laughlin MH, Price EM. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol. 1997; 273: H2575-2579.
    41. Delp MD, Laughlin MH. Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Med Sci Sports Exerc. 1997; 29: 1454-1461.
    42. Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis. 1997; 135: 1-7.
    43. Srere PA. Citrate synthase. Methods in Enzymology. 1969; 13: 3-5.
    44. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characte- rization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990; 101: 746-752.
    45. Hasunuma K, Yamaguchi T, Rodman DM, O’Brien RF, McMurtry IF. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am J Physiol. 1991; 260: L97-L104.
    46. Tsutsui M, Onoue H, Iida Y, Smith L, O`brien T, Katusic ZS. Adventitia- dependent relaxations of canine basilar arteries transduced with recombinant eNOS gene. Am J Physiol. 1999; 276: H1846-H1852.
    47. Yuan XM, Brunk UT, Hazell L. The morphology and natural history of atherosclerosis. In “Atherosclerosis: Gene Expression, Cell Interactions, and Oxidation” (eds. Dean RT and Kelly DT), New York: Oxford University Press Inc., 2000, pp. 1-5.
    48. Sayed-Ahmed MM, Khattab MM, Gad MZ, Mostafa N. L-carnitine prevents the progression of atherosclerotic lesions in hypercholesterolaemic rabbits. Pharmacol Res. 2001; 44: 235-242.
    49. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994; 14: 133-140.
    50. Jen CJ, Chan HP, Chen HI. Chronic exercise improves endothelial calcium signaling and vasodilatation in hypercholesterolemic rabbit femoral artery. Arterioscler Thromb Vasc Biol. 2002; 22: 1219-1224.
    51. Anderson PG, Boerth NJ, Liu M, McNamara DB, Cornwell TL, Lincoln TM. Cyclic GMP-dependent protein kinase expression in coronary arterial smooth muscle in response to balloon catheter injury. Arterioscler Thromb Vasc Biol. 2000; 20: 2192-2197.
    52. Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol. 2001; 91: 1421-1430.
    53. Laber U, Kober T, Schmitz V, Schrammel A, Meyer W, Mayer B, Weber M, Kojda G. Effect of hypercholesterolemia on expression and function of vascular soluble guanylyl cyclase. Circulation. 2002; 105: 855-860.
    54. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and
    contracting factors. FASEB J. 1989; 3: 2007-2018.
    55. Garland CJ, Plane F, Kemp BK, Cocks TM. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol Sci. 1995; 16: 23-30.
    56. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest. 1997; 100: 2793-2799.
    57. Van de Voorde J, Vanheel B, Leusen I. Endothelium-dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats. Circ Res. 1992; 70: 1-8.
    58. Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y, Fujishima M. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res. 1992; 70: 660-669.
    59. Cowan CL, Steffen RP. Lysophosphatidylcholine inhibits relaxation of rabbit abdominal aorta mediated by endothelium-derived nitric oxide and endothelium- derived hyperpolarizing factor independent of protein kinase C activation. Arterioscler Thromb Vasc Biol. 1995; 15: 2290-2297.
    60. Najibi S, Cowan CL, Palacino JJ, Cohen RA. Enhanced role of potassium channels in relaxations to acetylcholine in hypercho- lesterolemic rabbit carotid artery. Am J Physiol. 1994; 266: H2061-H2067.
    61. Fujii K, Ohmori S, Tominaga M, Abe I, Takata Y, Ohya Y, Kobayashi K, Fujishima M. Age-related changes in endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Physiol. 1993; 265: H509-H516.
    62. Mombouli JV, Nakashima M, Hamra M, Vanhoutte PM. Endothelium- dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training. Br J Pharmacol. 1996; 117: 413-418.
    63. Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology. 2002; 13: 561-568.
    64. Lessner SM, Prado HL, Waller EK, Galis ZS. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol. 2002; 160: 2145-2155.
    65. Adamopoulos S, Parissis J, Kroupis C, Georgiadis M, Karatzas D, Karavolias G, Koniavitou K, Coats AJ, Kremastinos DT. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J. 2001; 22: 791-797.
    66. Candipan RC, Wang BY, Buitrago R, Tsao PS, Cooke JP. Regression or progression. Dependency on vascular nitric oxide. Arterioscler Thromb Vasc Biol. 1996; 16: 44-50.
    67. Kingwell BA, Tran B, Cameron JD, Jennings GL, Dart AM. Enhanced vasodilation to acetylcholine in athletes is associated with lower plasma cholesterol. Am J Physiol. 1996; 270: H2008-H2013.
    68. Vasankari TJ, Kujala UM, Vasankari TM, Ahotupa M. Reduced oxidized LDL levels after a 10-month exercise program. Med Sci Sports Exerc. 1998; 30: 1496-1501.
    69. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999; 281: 1722-1727.
    70. Jen CJ, Jhiang SJ, Chen HI. Effects of flow on vascular endothelial intracellular calcium signaling of rat aortas ex vivo. J Appl Physiol. 2000; 89: 1657-1662.
    71. Chu TF, Huang TY, Jen CJ, Chen HI. Effects of chronic exercise on calcium signaling in rat vascular endothelium. Am J Physiol. 2000; 279: H1441-H1446.
    72. Marsden PA, Heng HHQ, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui L, Schappert KT. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993; 268: 17478-17488.
    73. Yang AL, Tsai SJ, Jiang MJ, Jen CJ, Chen HI. Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci. 2002; 9: 149-155.
    74. Ando J, Tsuboi H, Korenaga R, Takada Y, Toyama-Sorimachi N, Miyasaka M, Kamiya A. Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am J Physiol. 1994; 267: C679-C687.
    75. Tsao PS, Buitrago R, Chan JR, Cooke JP. Fluid flow inhibits endothelial adhesiveness: nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996; 94: 1682-1689.
    76. Lewis TV, Dart AM, Chin-Dusting JP, Kingwell BA. Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 1999; 19: 2782-2787.
    77. Quyyumi AA, Dakak N, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO. Nitric oxide activity in the atherosclerotic human coronary circulation. J Am Coll Cardiol. 1997; 29: 308-317.
    78. Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998; 98: 1842-1847.
    79. Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A, Leccia A, Arcucci O, Falco M, Leosco D, Chiariello M. Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res. 2002; 91: 1190-1197.

    下載圖示 校內:立即公開
    校外:2003-07-18公開
    QR CODE