| 研究生: |
蘇鈺婷 Su, Yu-Ting |
|---|---|
| 論文名稱: |
麩醯胺酸在酸性逆境下對黃豆根部結構、抗氧化系統和光合機制的正向調節 L-Glutamine Positively Modulate root system architecture, Antioxidant System and Photosynthetic Machinery in Soybean Under Acidic stress |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 麩醯胺酸 、酸性逆境 、黃豆 、抗氧化酵素 、生物刺激劑 |
| 外文關鍵詞: | L-Glutamine, acid stress, soybean, antioxidants, biostimulant |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土壤酸化是全球農業面臨的重要挑戰,會抑制根尖生長、破壞細胞膜、干擾水分與養分吸收,進而降低光合作用並促進ROS累積,造成氧化損傷,影響作物產量與品質。氮(N)為植物生長必需元素,參與多種代謝反應,外源性氮源可緩解多種非生物逆境,但傳統氮肥的過度施用已造成環境問題。麩醯胺酸(Gln)為氮同化的首個有機產物,兼具訊號分子與抗逆特性,具發展為永續型生物刺激劑(biostimulant)的潛力。本研究旨在探討不同氮源處理下,大豆(Glycine max L.)於酸性逆境中的生理與分子層面反應,以評估 Gln在提升酸逆境耐受性方面的應用潛力。實驗結果顯示,Gln顯著緩解酸性逆境造成的根部生長抑制,提升光合色素濃度,並降低丙二醛(MDA)累積與增強過氧化氫酶(CAT)活性,顯示其可減緩氧化壓力,強化抗氧化系統。元素分析指出,Gln處理可促進鈣(Ca)與鎂(Mg)的吸收,協助植物維持離子平衡與胞內穩定性。在基因表現層級,Gln降低STOP1、MPK4、WRKY40等逆境反應相關基因之表現,並提升GS2與MLO6等與氮代謝與鈣運輸相關基因之表現量,有助於強化植物營養吸收與逆境耐受性。代謝體分析顯示,Gln處理減少酸性逆境誘導之抗氧化代謝物(如類黃酮、酚類、有機酸)之累積,反應其對逆境訊號與氧化壓力具有緩解效果。本研究提供了對Gln幫助植物緩解逆境反應之作用機制的理解,並為其於永續農業中的應用潛力提供了理論依據。
Soil acidification severely impacts crop development by inhibiting root growth, disrupting membrane structure, and interfering with nutrient uptake, ultimately reducing yield and quality. While nitrogen (N) is essential for plant growth and has been shown to alleviate abiotic stresses, overuse of conventional N fertilizers has raised environmental concerns. L-Glutamine (Gln), a key organic nitrogen compound in N assimilation, is emerging as a biostimulant with potential in stress mitigation.This study investigated the physiological and molecular responses of soybean (Glycine max L.) to Gln under acidic stress. Results demonstrated that Gln significantly alleviated root growth inhibition, enhanced chlorophyll content, reduced malondialdehyde (MDA) levels, and increased catalase (CAT) activity, suggesting improved oxidative stress tolerance. Gln treatment also promoted Ca and Mg uptake, contributing to ionic balance and cellular stability. Transcriptomic analysis revealed downregulation of stress-related genes (STOP1, MPK4, WRKY40) and upregulation of GS2 and MLO6, associated with nitrogen metabolism and calcium transport. Metabolomic data further indicated reduced accumulation of antioxidant-related metabolites under Gln treatment, implying relief of stress signaling.These findings highlight Gln potential in enhancing acid stress tolerance through improved antioxidant defense, ion homeostasis, and gene regulation, supporting its application in sustainable agriculture.
Ahanger, M. A., Qin, C., Begum, N., Maodong, Q., Dong, X. X., El-Esawi, M., El-Sheikh, M. A., Alatar, A. A., & Zhang, L. (2019). Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 19, 1–12.
Asgher, M., Sehar, Z., Rehaman, A., Rashid, S., Ahmed, S., Per, T. S., Alyemeni, M. N., & Khan, N. A. (2022). Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). Environmental Pollution, 301, 119008.
Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2).
Banerjee, A., & Roychoudhury, A. (2017). Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 254, 3–16.
Bhuyan, M., Hasanuzzaman, M., Mahmud, J. A., Hossain, M. S., Alam, M. U., & Fujita, M. (2019). Explicating physiological and biochemical responses of wheat cultivars under acidity stress: Insight into the antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants, 25(4), 865–879.
Bonner, C. A., & Jensen, R. A. (1997). Recognition of specific patterns of amino acid inhibition of growth in higher plants, uncomplicated by glutamine-reversible ‘general amino acid inhibition’. Plant Science, 130(2), 133–143.
Borhannuddin Bhuyan, M., Hasanuzzaman, M., Nahar, K., Mahmud, J. A., Parvin, K., Bhuiyan, T. F., & Fujita, M. (2019). Plants behavior under soil acidity stress: Insight into morphophysiological, biochemical, and molecular responses. In Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 35–82).
Capaldi, F. R., Gratão, P. L., Reis, A. R., Lima, L. W., & Azevedo, R. A. (2015). Sulfur metabolism and stress defense responses in plants. Tropical Plant Biology, 8, 60–73.
Chen, H., Wu, Q., Ni, M., Chen, C., Han, C., & Yu, F. (2022). Transcriptome analysis of endogenous hormone response mechanism in roots of Styrax tonkinensis under waterlogging. Frontiers in Plant Science, 13.
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., & Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(2), 120–128.
Chen, Q., Wu, W., Zhao, T., Tan, W., Tian, J., & Liang, C. (2019). Complex gene regulation underlying mineral nutrient homeostasis in soybean root response to acidity stress. Genes, 10(5), 402.
Chen, W., Miao, Y., Ayyaz, A., Huang, Q., Hannan, F., Zou, H.-X., Zhang, K., Yan, X., Farooq, M. A., & Zhou, W. (2025). Anthocyanin accumulation enhances drought tolerance in purple-leaf Brassica napus: Transcriptomic, metabolomic, and physiological evidence. Industrial Crops and Products, 223, 120149.
Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316–328.
Di Ferdinando, M., Brunetti, C., Fini, A., & Tattini, M. (2012). Flavonoids as antioxidants in plants under abiotic stresses. In Abiotic stress responses in plants: Metabolism, productivity and sustainability (pp. 159–179).
Ding, L., Gao, C., Li, Y., Li, Y., Zhu, Y., Xu, G., Shen, Q., Kaldenhoff, R., Kai, L., & Guo, S. (2015). The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, 234, 14–21.
Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence—A genomics perspective. Molecular Plant Pathology, 3(5), 371–390.
Dong, Q., Wallrad, L., Almutairi, B. O., & Kudla, J. (2022). Ca²⁺ signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 64(2), 287–300.
Dowling, S., Regan, F., & Hughes, H. (2010). The characterisation of structural and antioxidant properties of isoflavone metal chelates. Journal of Inorganic Biochemistry, 104(10), 1091–1098.
Fedoroff, N. V. (2002). Cross-talk in abscisic acid signaling. Science's STKE, 2002(140), re10.
Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709–711.
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436–442.
Gao, Q., Wang, C., Xi, Y., Shao, Q., Li, L., & Luan, S. (2022). A receptor–channel trio conducts Ca²⁺ signalling for pollen tube reception. Nature, 607(7919), 534–539.
Gill, R. A., Ahmar, S., Ali, B., Saleem, M. H., Khan, M. U., Zhou, W., & Liu, S. (2021). The role of membrane transporters in plant growth and development, and abiotic stress tolerance. International Journal of Molecular Sciences, 22(23), 12792.
Gorelova, V., Ambach, L., Rébeillé, F., Stove, C., & Van Der Straeten, D. (2017). Folates in plants: Research advances and progress in crop biofortification. Frontiers in Chemistry, 5, 21.
Grant, M. R., & Jones, J. D. (2009). Hormone (dis)harmony moulds plant health and disease. Science, 324(5928), 750–752.
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J., Han, W., Zhang, W., Christie, P., Goulding, K., Vitousek, P., & Zhang, F. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010.
Gür, N., Yüksel, E. A., & Topdemir, A. (2016). Acidity effect in pollen germination and tube length of Prunus amygdalus Batsch and Prunus domestica L. Journal of Applied Biological Sciences, 10(2), 41–45.
Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8(9), 1304–1320.
Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31.
Heinemann, B., & Hildebrandt, T. M. (2021). The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72(13), 4634–4645.
Hildebrandt, T. M. (2018). Synthesis versus degradation: Directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 98(1), 121–135.
Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290–300.
Hu, G., Yue, X., Song, J., Xing, G., Chen, J., Wang, H., Su, N., & Cui, J. (2021). Calcium positively mediates blue light-induced anthocyanin accumulation in hypocotyl of soybean sprouts. Frontiers in Plant Science, 12, 662091.
Huang, C. F., & Ma, Y. (2025). Aluminum resistance in plants: A critical review focusing on STOP1. Plant Communications, 6(2), 101200.
Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., & Kobayashi, M. (2007). Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences, 104(23), 9900–9905.
Jain, M., Nagar, P., Goel, P., Singh, A. K., Kumari, S., & Mustafiz, A. (2018). Second messengers: Central regulators in plant abiotic stress response. In A. Wani & S. Herath (Eds.), Abiotic stress-mediated sensing and signaling in plants: An omics perspective (pp. 47–94). Springer.
Ji, H., Yang, G., Zhang, X., Zhong, Q., Qi, Y., Wu, K., & Shen, T. (2022). Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. Frontiers in Plant Science, 13, 1049954.
Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., & Zhang, J. (2017). WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59(2), 86–101.
Jiménez-Arias, D., García-Machado, F. J., Morales-Sierra, S., Luis, J. C., Suarez, E., Hernández, M., Valdés, F., & Borges, A. A. (2019). Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environmental and Experimental Botany, 158, 215–222.
Kan, C.-C., Chung, T.-Y., Juo, Y.-A., & Hsieh, M.-H. (2015). Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics, 16, 122.
Kocsy, G., Tari, I., Vanková, R., Zechmann, B., Gulyás, Z., Poór, P., & Galiba, G. (2013). Redox control of plant growth and development. Plant Science, 211, 77–91.
Koyama, H., Toda, T., & Hara, T. (2001). Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: Pectin–Ca interaction may play an important role in proton rhizotoxicity. Journal of Experimental Botany, 52(355), 361–368.
Kumar, K., Raina, S. K., & Sultan, S. M. (2020). Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. Journal of Plant Biochemistry and Biotechnology, 29(4), 700–714.
Lambais, M. R., Ríos‐Ruiz, W., & Andrade, R. (2003). Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 160(2), 421–428.
Liang, C., Piñeros, M. A., Tian, J., Yao, Z., Sun, L., Liu, J., Shaff, J., Coluccio, A., Kochian, L. V., & Liao, H. (2013). Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 161(3), 1347–1361.
Liao, H.-S., Lee, K.-T., Chung, Y.-H., Chen, S.-Z., Hung, Y.-J., & Hsieh, M.-H. (2024). Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. Plant Physiology, 195(3), 2289–2308.
Lin, S., Zeng, S., A, B., Yang, X., Yang, T., Zheng, G., Mao, G., & Wang, Y. (2021). Integrative analysis of transcriptome and metabolome reveals salt stress orchestrating the accumulation of specialized metabolites in Lycium barbarum L. fruit. International Journal of Molecular Sciences, 22(9), 4414.
Lin, Z., ZongGuo, X., Chen, T., Gao, Z., Chen, C., Yin, C., Yu, Z., Yu, K., Song, W., & Zhang, Y. (2025). Optimizing tobacco growth under low temperature: Glutamine enhancing tolerance by coordinating carbon and nitrogen metabolism. Industrial Crops and Products, 225, 120573.
Liu, Y., Zheng, J., Ge, L., Tang, H., Hu, J., Li, X., Wang, X., Zhang, Y., & Shi, Q. (2024). Integrated metabolomic and transcriptomic analyses reveal the roles of alanine, aspartate and glutamate metabolism and glutathione metabolism in response to salt stress in tomato. Scientia Horticulturae, 328, 112911.
Lorenzo, O., & Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Current Opinion in Plant Biology, 8(5), 532–540.
Lu, L., Chen, S., Yang, W., Wu, Y., Liu, Y., Yin, X., Yang, Y., & Yang, Y. (2023). Integrated transcriptomic and metabolomic analyses reveal key metabolic pathways in response to potassium deficiency in coconut (Cocos nucifera L.) seedlings. Frontiers in Plant Science, 14, 1112264.
Marschner, H. (2012). Marschner's mineral nutrition of higher plants (3rd ed.). Academic Press.
Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14, 1110622.
Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11–19.
Murakami, S., Nakata, R., Aboshi, T., Yoshinaga, N., Teraishi, M., Okumoto, Y., Ishihara, A., Morisaka, H., Huffaker, A., Schmelz, E. A., & Mori, N. (2014). Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites, 4(3), 532–546.
Näsholm, T., Kielland, K., & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New Phytologist, 182(1), 31–48.
Navarro-León, E., López-Moreno, F. J., Borda, E., Marín, C., Sierras, N., Blasco, B., & Ruiz, J. M. (2022). Effect of L-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. Journal of the Science of Food and Agriculture, 102(15), 7098–7106.
Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2019). Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agriculture, 4(1), 164–172.
Panchal, P., Miller, A. J., & Giri, J. (2021). Organic acids: Versatile stress-response roles in plants. Journal of Experimental Botany, 72(11), 4038–4052.
Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., & Chow, T.-F. F. (2009). Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science, 324(5930), 1068.
Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826.
Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., Gour, V. S., Minkina, T., Sushkova, S., & Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), 267.
Rathinasabapathi, B. (2000). Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Annals of Botany, 86(4), 709–716.
Ravet, K., & Pilon, M. (2013). Copper and iron homeostasis in plants: The challenges of oxidative stress. Antioxidants & Redox Signaling, 19(9), 919–932.
Raza, A., Charagh, S., Zahid, Z., Mubarik, M. S., Javed, R., Siddiqui, M. H., & Hasanuzzaman, M. (2021). Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 40(8), 1513–1541.
Ródenas, R., & Vert, G. (2020). Regulation of root nutrient transporters by CIPK23: ‘One kinase to rule them all’. Plant and Cell Physiology, 62(4), 553–563.
Roychoudhury, A., Datta, K., & Datta, S. (2011). Abiotic stress in plants: From genomics to metabolomics. In Omics and plant abiotic stress tolerance (pp. 91–120).
Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2014). The pH strongly influences the uranium-induced effects on the photosynthetic apparatus of Arabidopsis thaliana plants. Plant Physiology and Biochemistry, 82, 254–261.
Saleem, M. H., Zafar, S., Javed, S., Anas, M., Ahmed, T., Ali, S., Mirmazloum, I., & Ahmad, A. (2024). Modulatory effects of glutamic acid on growth, photosynthetic pigments, and stress responses in olive plants subjected to cadmium stress. Journal of King Saud University - Science, 36(11), 103540.
Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., & Kobayashi, M. (2009). STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology, 150(1), 281–294.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.
Schreiber, L. (2010). Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science, 15(10), 546–553.
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), Article 2452.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012(1), 217037.
Shi, Q.-H., Zhu, Z.-J., Juan, L., & Qian, Q.-Q. (2006). Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agricultural Sciences in China, 5(10), 767–772.
Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., & Hasanuzzaman, M. (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(22), 3158.
Shrivastav, P., Prasad, M., Singh, T. B., Yadav, A., Goyal, D., Ali, A., & Dantu, P. K. (2020). Role of nutrients in plant growth and development. In Contaminants in Agriculture: Sources, Impacts and Management (pp. 43–59).
Siecińska, J., & Nosalewicz, A. (2017). Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A review. Reviews of Environmental Contamination and Toxicology, 243, 1–26.
Singh, J., & Thakur, J. K. (2018). Photosynthesis and abiotic stress in plants. In Biotic and Abiotic Stress Tolerance in Plants (pp. 27–46).
Singh, R. (2025). Microbial allies: Enhancing plant defense via phenylpropanoid pathway and lignification. Plant Physiology, 197(3), kiaf059.
Singh, R., Singh, S., Parihar, P., Mishra, R. K., Tripathi, D. K., Singh, V. P., Chauhan, D. K., & Prasad, S. M. (2016). Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes. Frontiers in Plant Science, 7, 1299.
Song, G. C., Choi, H. K., & Ryu, C. M. (2013). The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Annals of Botany, 111(5), 925–934.
Straub, T., Ludewig, U., & Neuhäuser, B. (2017). The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. The Plant Cell, 29(2), 409–422.
Taj, G., Agarwal, P., Grant, M., & Kumar, A. (2010). MAPK machinery in plants: Recognition and response to different stresses through multiple signal transduction pathways. Plant Signaling & Behavior, 5(11), 1370–1378.
Tian, W. H., Ye, J. Y., Cui, M. Q., Chang, J. B., Liu, Y., Li, G. X., Wu, Y. R., Xu, J. M., Harberd, N. P., Mao, C. Z., Jin, C. W., Ding, Z. J., & Zheng, S. J. (2021). A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Molecular Plant, 14(9), 1554–1568.
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431.
Trush, K., & Pal'ove-Balang, P. (2023). Biosynthesis and role of isoflavonoids in legumes under different environmental conditions. Plant Stress, 8, 100153.
Tuteja, N., & Mahajan, S. (2007). Calcium signaling network in plants: An overview. Plant Signaling & Behavior, 2(2), 79–85.
Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86.
Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book, 8, e0140.
Von Uexküll, H., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171, 1–15.
Wang, P., Hsu, C.-C., Du, Y., Zhu, P., Zhao, C., Fu, X., Zhang, C., Paez, J. S., Macho, A. P., & Tao, W. A. (2020). Mapping proteome-wide targets of protein kinases in plant stress responses. Proceedings of the National Academy of Sciences, 117(6), 3270–3280.
Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162–176.
Wdowiak, A., Podgórska, A., & Szal, B. (2024). Calcium in plants: An important element of cell physiology and structure, signaling, and stress responses. Acta Physiologiae Plantarum, 46(12), 108.
Yadav, D. S., Jaiswal, B., Gautam, M., & Agrawal, M. (2020). Soil acidification and its impact on plants. In Plant Responses to Soil Pollution (pp. 1–26).
Yadav, V., Wang, Z., Wei, C., Amo, A., Ahmed, B., Yang, X., & Zhang, X. (2020). Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens, 9(4), 312.
Yang, M., Huang, S.-X., Fang, S.-Z., & Huang, X.-L. (2011). Response of seedling growth of four Eucalyptus clones to acid and aluminum stress. Journal of Plant Nutrition and Fertilizers, 17(1), 195–201.
Yang, X., He, K., Chi, X., Chai, G., Wang, Y., Jia, C., Zhang, H., Zhou, G., & Hu, R. (2018). Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. Plant Science, 277, 229–241.
Ye, J. Y., Tian, W. H., & Jin, C. W. (2022). Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biology, 2(1), 4.
Yin, H., Yang, F., He, X., Du, X., Mu, P., & Ma, W. (2022). Advances in the functional study of glutamine synthetase in plant abiotic stress tolerance response. The Crop Journal, 10(4), 917–923.
Zayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D., & Yuan, Z.-C. (2023). Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10), 1443.
Zhang, C.-P., Meng, P., Li, J.-Z., & Wan, X.-C. (2014). Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings. Chinese Journal of Plant Ecology, 38(12), 1345.
Zhang, H., Zhao, Y., & Zhu, J.-K. (2020). Thriving under stress: How plants balance growth and the stress response. Developmental Cell, 55(5), 529–543.
Zhang, H., Zhu, J., Gong, Z., & Zhu, J.-K. (2022). Abiotic stress responses in plants. Nature Reviews Genetics, 23(2), 104–119.
Zhang, Y., Xu, J., Li, R., Ge, Y., Li, Y., & Li, R. (2023). Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences, 24(13), 10915.
Zhang, Y.-K., Zhu, D.-F., Zhang, Y.-P., Chen, H.-Z., Xiang, J., & Lin, X.-Q. (2015). Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings. PLOS ONE, 10(2), e0116971.
Zhong, C., Bai, Z.-G., Zhu, L.-F., Zhang, J.-H., Zhu, C.-Q., Huang, J.-L., Jin, Q.-Y., & Cao, X.-C. (2019). Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 157, 269–282.
Zhou, W., Wang, Z. G., Li, Y., Wu, G. J., Li, M., Deng, Z. L., Cui, F. J., Xu, Q. Q., Li, Y., & Zhou, Y. X. (2025). Comparative transcriptome and metabolome analysis reveals the differential response to salinity stress of two genotypes brewing sorghum. Scientific Reports, 15(1), 3365.
陳尊賢(1992)。台灣農地酸性土壤之特性及其分類。《酸性土壤之特性及其改良研討會論文集》,中國土壤肥料學會,2-1。
校內:2030-08-01公開