| 研究生: |
吳仲閔 Wu, Chung-Min |
|---|---|
| 論文名稱: |
以地面光譜儀與無人機載多光譜偵測水中藻類光譜反射率和濃度之關係 Detecting the Relationship between Spectral Reflectivity of Algae Bloom and Concentration via UAV Multispectral and Portable Spectroradiometer |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 地面式手持光譜儀 、光譜反射率 、無人機多光譜 、藍綠菌藻 、藻華 |
| 外文關鍵詞: | UAV multispectral, Spectral Reflectivity, Portable Spectroradiometer, Cyanobacteria, Algae Bloom |
| 相關次數: | 點閱:101 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統遙測均依賴載台經過目標地上方取像,衛星的再訪週期短但是解析力 差;航測解析力高但是再訪週期長,且限制於法規與經費無法涵蓋大部分範圍。 若是因應特定時間與區域的突發事件,機動性不足。池塘或是湖泊的藻華事件 通常是局部且無預警的發生,攸關生態與水質;養殖業生計等,一般以點狀取樣 後送進實驗室量測分析為主要偵測法。此法耗時且昂貴,另外點狀數據缺乏面 狀分佈,對於藻華發生與整治對策研擬助益不大。
無人機(UAV)的技術發展提供獲取遙測資料更加便利的手段,飛航技術的提升除了讓飛行過程更加穩定、負重增加,蓄電量的提升也讓覆蓋飛航範圍更加廣大,配合搭載多光譜儀器(Multi-spectral Imager)可以監測更多的波段訊號,本研究使用無人機除傳統可見光(Visible Spectrum)外,也能夠拍攝紅邊(Red Edge)及近紅外光(Near Infrared),並配合手持式地面光譜儀以及現場採樣分析,結合地面與空拍的資料作進一步分析。
本研究選擇位於國立屏東科技大學的生態池靜思湖、周邊魚塭及牛角灣溪埤塘作為研究對象,透過3月時的現場勘查發現研究區域水色偏綠,並取水樣分析,確立其藻類濃度高於地面光譜檢測最低濃度24000cells/ml,並配合無人機拍攝時程採取水樣與現地光譜資料。
透過相關性分析、波段比分析、植生指數進行資料轉換,接著使用多變數線性迴歸型分析。並搭配觀察不同區域的藻類光譜特徵和濃度來探討結果後以觀察到藍綠菌藻(Cyanobacteria)反射光譜受藻藍蛋白(Phycocyanin)影響最為明顯,波段區間落在610~650nm。迴歸結果中室內固定光源的顯著值與誤差皆有較理想的結果,而運用R、RE及NIR三波段進行預測比起使用波段比、植生指數預測梗為準確,在多數情況下,使用藻菌數量為濃度評斷標準也符合趨勢。
利用遙測與現地資料可以結合出更為優良的結果,遙測應用可滿足大範圍連續資料的蒐集,地面的現地資料則是能提供更為詳細狀態資料,在兩者配合下最佳結果可以達到誤差7%的結果,儘管受限於範圍與藻種但依舊可以做為濃度預測上的參考。
Conventional remote sensing relies on platform of sensors to pass above the target region for data acquiring; the revisit time of satellite is short, but the low resolution is the iv drawback. On the other hand, photogrammetry offers better resolution, but the revisit time could be long; by the limitation of the air-field management regulation and finance concern, it is not possible to cover most of the ground via such means. In respond to sudden occurrence event at location, this type of technology lacking the mobile ability then could not offer required information in time. Occurrence of algal bloom in ponds or lakes is an local event without precursor,it will affect the water quality so is the ecological environments thus harming the living hood of aquaculture. In general, pointwise sampling then measuring the concentration in the laboratory to offer in-situ condition but this kind of information is not only costly but also could not fit into the requirement of remediation.
The development of UAV technology provides a more convenient means of acquiring remote sensing data. Advancements in flight technology have improved stability, payload capacity, and battery life, enabling wider coverage. Equipped with a Multi-spectral Imager, UAVs can capture signals across multiple spectral bands. In this study, the UAV captured visible spectrum, red edge, and near-infrared light, combined with handheld ground-based spectrometry and on-site sampling for further analysis.
The study focused on the Eco-Pond Jing-Shi Lake, surrounding fish ponds, and Niujiaowan river near NPUT. By conducting correlation analysis, band ratio analysis, and NDVI transformations, followed by multivariate linear regression analysis, the study aimed to investigate the relationship between spectral characteristics and algal concentrations in different areas. Cyanobacteria's reflectance spectra, influenced most notably by Phycocyanin, were observed in the wavelength range of 610-650nm. Regression results using indoor fixed light sources demonstrated significant values and satisfactory errors. Concentration-based predictions outperformed those using band ratios and vegetation indices.
Combining remote sensing with on-site data yielded improved results. Remote sensing facilitated the collection of continuous data over a large area, while ground-based data provided detailed information. The optimal outcome, with an error rate of 7%, was achieved through their combination. Despite limitations in range and algal species, the results serve as a reference for concentration predictions.
1. AUAV. (n.d.). DRONE TYPES: MULTI-ROTOR VS FIXED-WING VS SINGLE ROTOR VS HYBRID VTOL. Retrieved from https://www.auav.com.au/articles/drone-types/
2. Alvarez-Vanhard, E., Corpetti, T., & Houet, T. (2021). UAV & satellite synergies for optical remote sensing applications: A literature review. Science of Remote Sensing, 3, 100019.
3. Berg, K., Carmichael, W. W., Skulberg, O. M., Benestad, C., & Underdal, B. (1987). Investigation of a Toxic Water-Bloom of Microcystis-Aeruginosa (Cyanophyceae) in Lake-Akersvatn, Norway. Hydrobiologia, 144(2), 97-103.
4. Dawson, R. M. (1998). The toxicology of microcystins. Toxicon, 36(7), 953-962. doi:https://doi.org/10.1016/S0041-0101(97)00102-5
5. Deng, J. C., Cheng, F., Liu, X., Peng, J. X. (2016) Horizontal migration of algal patches associated with cyanobacterial blooms in an eutrophic shallow lake. Ecological Engineering, 87, 185-193
6. Edwin, T. E. (1985)。Surface Water Monitoring,1-7
7. Everaerts, J. (2008). The Use of Unmanned Aerial Vehicles (UAVs) for Remote Sensing and Mapping. Remote Sensing and Earth Observation Processes Unit, Flemish Institute for Technological Research (VITO).
8. Elliott, J. A., Thackeray, S. J., Huntingford, C., & Jones, R. G. (2005). Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwater Biology, 50(9), 1404-1411.
9. Gao, H., Zhao, Z., Zhang, L., & Ju, F. (Year). Cyanopeptides Restriction and Degradation Co-mediate Microbiota Assembly during a Freshwater Cyanobacterial Harmful Algal Bloom (CyanoHAB). Journal Name, Volume(Issue), Page range.
10. Gustaaf, M. H., Donald, M. A., Catherine, B., Marie-Yasmine., Dechraoui, B., Eileen, B., Mireille, C., Henrik, E., Mitsunori, I., Bengt, K., Cynthia, H. M., Inés, S., Grant, C. P., Pieter, P., Anthony, R., Laura, S., Patricia, A. T., Vera, L. T., Aletta, T. Y., & Adriana, Z. (2021). Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Communications Earth & Environment, 2(1), 117.
11. Havens, K. E., Fukushima, T., Xie, P., Iwakuma, T., James, R. T., Takamura, N., et al. (2001). Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environmental Pollution, 111(2), 262-272.
12. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-843.
13. Intergovernmental Panel on Climate Change (IPCC) Working Group III Report. (2007). Climate Change 2007. United Nations Environmental Programme.
14. Janssen, E. M. (2019). Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-499.
15. Kring, S. A., Figary, S. E., Boyer, G. L., Watson, S. B., & Twiss, M. R. (2014). Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: Evaluation of spectral calibration, instrument intercompatibility, and performance range. Canadian Journal of Fisheries and Aquatic Sciences. Advance online publication. https://doi.org/10.1139/cjfas-2013-0599
16. Kislik, C., Dronova, I., & Kelly, M. (2018). UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Journal Name, Volume(Issue), Page range. DOI/URL
17. Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae.
18. Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogramm. Engng Remote Sens, 49, 219-229.
19. Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R., & Gioli, B. (2015). Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing, 7(3), 2971-2990. https://doi.org/10.3390/rs70302971
20. NASA, S., & SilvaCarbon. (2019). The SAR Handbook. https://doi.org/10.25966/nr2c-s697
21. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an Expanding, Highly Adaptive Cyanobacterium: Worldwide Distribution and Review of Its Ecology.
22. Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57-58.
23. Paerl, H. W. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Advances in Experimental Medicine and Biology, 619, 216-241.
24. Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling Harmful Cyanobacterial Blooms in a World Experiencing Anthropogenic and Climatic-Induced Change. Journal Name, Volume(Issue), Page range.
25. Palik, M., & Nagy, M. (2019). Brief History of UAV Development.
26. Pokrzywinski, K., Johansen, R., Reif, M., Bourne, S., Hammond, S., & Fernando, B. (2022). Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a Microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts. Harmful Algae, 117, 102268.
27. Rundquist, D. C., Han, L., Schalles, J. F., & Peake, J. S. (1996). Remote measurement of algal chlorophyll in surface waters: the case for the first derivative of reflectance near 690 nm. Photogrammetric Engineering and Remote Sensing, 62(2), 195-200.
28. Tassan, S. (1987). Evaluation of the potential of the Thematic Mapper for marine application. International Journal of Remote Sensing, 8(10), 1455-1478.
29. Taranu, Z. E., et al. (2015). Acceleration of Cyanobacterial Dominance in North Temperate-Subarctic Lakes during the Anthropocene. Ecology Letters, 18, 375-384.
30. Ranjbar, M.H., Hamilton, D.P., Etemad-Shahidi, A., Helfer F. Individual-based modelling of cyanobacteria blooms: physical and physiological processes. Science of the Total Environment., 792 (2021), Article 148418
31. United States Environmental Protection Agency. (2022). Harmful Algal Blooms and Cyanotoxins in Drinking Water: Factsheets and FAQs.
32. USEPA. (2001). Creating a Cyanotoxin Target List for the Unregulated Contaminant Monitoring Rule.
33. Vincent, R. K. (1984), Spectral ratio imaging methods for geological remote sensing from aircraft and satellites. Environmental Research Institute of Michigan.
34. Waite, D. T., Sommerstad, H., Grover, R., Kerr, L., & Westcott, N. D. (1992). Pesticides in ground water, surface water and spring runoff in a small Saskatchewan watershed. Environmental Toxicology and Chemistry: An International Journal, 11(6), 741-748.
35. Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. Science of the Total Environment, 328(1-3), 195-206.
36. World Health Organization. (2011). Guidelines for drinking-water quality - 4th ed. WHO Library Cataloguing-in-Publication Data.
37. Wu, T., Qin, B., Ma, J., Yang, Z., Yang, G. Movement of cyanobacterial colonies in a large, shallow and eutrophic lake: a review. Chin. Sci. Bull., 64 (2019), pp. 3833-3843
38. What is Hyperspectral Imaging: A Comprehensive Guide. (2011)。Website: https://www.specim.com/technology/what-is-hyperspectral-imaging/
39. Xue, K., Zhang, Y., Duan, H., Ma, R., Loiselle, S., Zhang, M. A remote sensing approach to estimate vertical profile classes of phytoplankton in a eutrophic lake. Remote Sens., 7 (2015), pp. 14403-14427
40. 江致民、謝奉家、何明勳 (2018)。無人機施藥的科技研發成果與展望。農政與農情,317,115-120。
41. 呂建澐 (2022)。遙控無人機應用於災害搶救之研究-以嘉義縣為例。南華大學,科技學院永續綠色科技碩士學位學程論文
42. 吳俊宗 (2000)。台灣淡水藻類的多樣性問題-從矽藻指標看問題。植物暨微生物學研究所,年海峽兩岸生物多樣性與保育研討會論文集。http://ir.sinica.edu.tw/handle/201000000A/13390
43. 吳盈萱 (2011). 人工溼地水質參數與藻類指標之相關性研究。大仁科技大學環境管理研究所,碩士論文。
44. 吳仲恩 (2023)。利用無人機與機器學習於邊坡巡檢與分析之研究。國立雲林科技大學營建工程系,碩士論文。
45. 游奇哲 (2023)。應用深度學習與超解析法於無人機影像判釋戴帽鳳梨株數之研究。逢甲大學土地管理學系,碩士論文。
46. 張弘熙 (2022)。以無人機進行坡地茶園因蟲害所導致異常的即時辨識研究。國立台灣大學電機工程學研究所,碩士論文。
47. 楊大慶 (2013)。三種淡水藻固有光學性質之分析及水色模擬研究。國立成功大學環境工程學系,碩士論文。
48. 劉正千、張智華、許華宇、譚子健、溫清光 (2007)。應用ISIS高頻譜光學遙測影像於曾文水庫之水質監測。科儀新知,29(3),29-42。
49. 周巧盈、巫思揚、陳琦玲 (2018)。應用無人飛機航拍影像協助農業勘災-以香蕉災損影像判釋為例。Journal of Photogrammetry and Remote Sensing,23(2),83-101。
50. 章國威、吳啟南、陳伯中 (2003)。利用Landsat TM資料以Mahalanobis影像分類法分析德基水庫之藻華現象。航測及遙測學刊,8(2),13-26。
51. 張圳、張彌、肖薇、王偉、肖启濤、王咏薇、李旭輝(2018)。太湖水 生植被ndvi的時空變化特徵分析。遙感學報,22(2)。
52. 雷祖強 (2001)。衛星遙測及隨機變域模擬於水庫優養之機率評估。國立台灣大學農業工程學研究所,碩士論文。
53. 譚子健 (2006)。應用生光模式及福衛二號遙測影像研究曾文水庫水質之時空分布。成功大學環境工程學系,碩士論文。
54. 蕭國鑫、吳啟南、廖子毅 (2005)。地面光譜資料與SPOT影像應用於水質定量推估研究。航測及遙測學刊,10(2),169-182。行政院環境保護署. (2005). 以生態工法淨化水庫水質控制優養化研究計畫。行政院環境保護署(計畫編號:EPA-94-U1G1-02-102)。
55. 行政院環境保護署,全國環境水質資訊網: https://wq.epa.gov.tw/EWQP/zh/Default.aspx
56. 水體透明度測定方法(2013),環署檢字第1020073224號公告
57. 上海光傲貿易公司,FLUORILON-99W 標準白板 靶標產品參數網址: http://www.light-all.com/content/zh-TW/product/component-material/standard-material_k687.aspx