| 研究生: |
趙鴻椿 Chao, Hung-Chun |
|---|---|
| 論文名稱: |
臺灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響 Chemical Compositions of the Mud Volcano Gases on land in Taiwan: Possible Impact on Global Methane Sources |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 泥火山 、甲烷 、氣體通量 |
| 外文關鍵詞: | mud volcanoes, methane, methane flux |
| 相關次數: | 點閱:124 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泥火山是重要的甲烷逸氣管道,但卻一直被視為可忽略的。我們利用排水集氣法測量臺灣陸上泥火山的氣體流量並採集氣體樣品,去除水汽後利用氣相層析儀分析其氣體成分。發現西南部泥火山氣體主要為甲烷(80%以上)、空氣(N2+O2+Ar,1~10%)與二氧化碳(1~5%);以小滾水的甲烷濃度最高,可達到98%。嘉義中崙濁水潭噴發氣體含量與其他地區不同,主要成分為二氧化碳(78%)、甲烷(14%)與空氣(8%)。東部泥火山噴氣中空氣含量較高,二氧化碳則甚低;分別為甲烷80~95%,空氣5~20%,二氧化碳0.2%以下。相較於西部的泥火山,東部泥火山二氧化碳的含量低了約一個數量級。計算各泥火山的C1 (methane) / C2 (ethane) + C3 (propane)的比值,嘉義地區以及養女湖地區泥火山為熱形成來源(比值59-138),東部地區泥火山為混合來源偏熱形成來源(比值600-1049),西南部地區泥火山則為混合來源偏生物形成來源(比值542-2438)。與液體同位素資料相比,烏山頂地區泥火山顯示出不同的來源深度。另在烏山頂、小滾水、滾水坪、羅山等泥火山做密集連續採樣,結果顯示噴氣中甲烷氣體濃度隨時間變化。以烏山頂為例,變化可達20%;但其他地區泥火山甲烷濃度變化在2-4%。臺灣地區陸上泥火山噴口每年排放980-2000公噸甲烷氣體,若加上土壤逸氣總量可能達到10-20倍。參考文獻中的泥火山氣體通量做評估,則全球泥火山每年約排放8.45-16.9 Tg甲烷至大氣中,佔大氣年收入總量的2.5%,因此泥火山是不可忽略的大氣甲烷來源。
Mud volcanoes are important pathway for methane emission from deeply buried sediments but were considered to be negligible in global budget consideration. The emitting gases from various mud volcanoes on land in Taiwan were collected and analyzed. The major components in southwestern mud volcanoes are methane (>80%), air (N2+O2+Ar, 1~10%) and carbon dioxide (1~5%). The highest methane concentration of 98% CH4 was detected at Siaoguenshui. It is interesting to note that the Juoshuitan at Chunglune, Chiayi shows much lower methane content, carbon dioxide (78%), methane (14%) and air (8%). Mud volcano gases collected from eastern Taiwan display significantly higher air (5~20%) with extremely low carbon dioxide (<0.2%). Applying a maturation index [C1 (methane) / C2 (ethane)+C3 (propane)], mud volcanoes gases in Chiayi and Yangnvhu fields are of thermogenic origin (R=59 - 138). The gasses collected from southwestern and eastern Taiwan are mixtures of thermogenic and biogenic (R=542 - 2438). High spatial time-series experiments were conducted at four mud volcano fields, Wusandin, Siaoguenshui, Guenshuipin, and Loushan. There are large variations in methane flux (up to 20% at Wusandin). The estimated methane flux generated from mud volcanoes on land in Taiwan ranges from 980 and 2000 tons/year. The possible methane release globally from mud volcanoes can reach a total amount 8.45 to 16.9 Tg per year, which may impact significantly the budget distributions of natural methane.
中文部分
王鑫、徐美玲、楊建夫,臺灣泥火山地形景觀,臺灣省立博物館年刊,第三十一卷,第31-49頁,1988
江政鴻,嘉義中崙地區天然逸氣來源與自動化監測結果,國立臺灣大學地質學研究所碩士論文,2002
何春蓀,臺灣地質概論臺灣地質圖說明書第二版,經濟部中央地質調查所,中華民國,1986
李金祥,琉球嶼海底泥火山之成因與震測解釋之研究,國立海洋大學應用地球物理研究所碩士論文,1996
陳格忠、劉家瑄,臺灣西南海域天然氣水合物分佈及震測特徵,21世紀新能源-天然氣水合物研討會論文集,第58-63頁,2002
詹博舜,由穩定氫氧同位素探討臺灣西南活動構造帶泉水之來源,國立臺灣大學地質學研究所碩士論文,2001
謝佩珊,臺灣地區溫泉與泥火山氣體來源之初探,國立臺灣大學地質學研究所碩士論文,2000
英文部分
Al’bov, S. V., The Kerch – Taman hydrogeochemical and mud volcanoe region. Dokl. A kad. Nauk SSSR, 197 (1), 175-177 (1971).
Bains, S., R. Norris, R. Corfield and K. Faul, Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, 407, 171-174 (2000).
Bernard, B. B., J. M. Brooks and W. M. Sackett, Natural gas seepage in the gulf of Mexico. Earth Planet. Sci. Lett., 31, 48-54 (1976).
Brown, A., Evaluation of possible gas microseepage mechanisms. AAPG Bull., 84 (11), 1775-1789 (2000).
Bray, C. J. and D. E. Karig, Porosity of sediments on accretionary prisms and some implications for dewatering processes. J. Geophys. Res., 90, 768-787 (1985).
Chow, J., J. S. Lee, R. Sun, C. S. Liu and N. Lundberg, Characteristics of the bottom simulating reflectors near mud diapers: offshore southwestern Taiwan. Geo-Mar. Lett., 20, 3-9 (2000).
Chow, J., J. S. Lee, C. S. Liu, B. D. Lee and J. S. Watkins, A submarine canyon as the cause of a mud volcano – Liuchieuyu Island in Taiwan. Mar. Geol., 176, 55-63 (2001).
Davidson, M. J., Toward a general theory of vertical migration. Oil Gas J., 80 (25), 288-300 (1982).
Delisle, G., U. von Rad, H. Andruleit, C. H. von Daniels, A. R. Tabrez and A. Inam, Active mud volcanoes on- and offshore eastern Makran, Pakistan. Int. J. Earth Sciences, 91, 93-110 (2001).
Dia, A., M. Castrec-Rouelle, J. Boulegue and P. Comeau, Trinidad mud volcanoes: Where do the expelled fluids come from? Geochim. Cosmochim. Acta, 63 (7/8), 1023-1038 (1999).
Dimitrov, L. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev., 59, 49-76 (2002).
Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric CH4. J. Geophys. Res., 99, 17021-17043 (1994).
Etiope, G., A. Caracausi, R. Favara, F. Italiano, C. Baciu, Methane emission from the mud volcanoes of Sicily (Italy). Geophys. Res. Lett., 29 (8), 14340-14343 (2002).
Etiope, G., and R. W. Klusman, Geologic emissions of methane to the atmosphere, Chemosphere, 49, 777-789 (2002).
Etiope, G., A. Caracausi, R. Favara, F. Italiano, C. Baciu, Reply to comment by A. Kopf on “Methane emission from the mud volcanoes of Sicily (Italy)”, and notice on CH4 flux data from European mud volcanoes. Geophys. Res. Lett., 30 (2), 1094 (2003).
Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele and P. J. Fraser, Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7), 13033-13065 (1991).
Getz, F. A., Molecular nitrogen: Clue in coal-derived-methane hunt. Oil and Gas J., 75, 220-221 (1977).
Gieskes, J. M., C. F. You, T. F. Lee, T. F. Yui and H. W. Chen, Hydro-geochemistry of mud volcanoes in Taiwan. Acta Geol. Taiwanica, 30, 79-88 (1992).
Ginsburg, G. D., A. V. Milkov, V. A. Soloviev, A. V. Egorov, G. A. Cherkashev, P. R. Vgot, K. Crane, T. D. Lorenson and M. D. Khutorskoy, Gas hydrate accumulation at the Hakon Mosby Mud Volcano. Geo-Mar. Lett., 19, 57-67 (1999).
Hedberg, H. D., Relation of methane generation to undercompacted shales, shale diapers, and mud volcanoes. AAPG Bull., 58 (4), 661-673 (1974).
Hein, R., P. J. Crutzen and M. Heinmann, An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochem. Cycles, 11, 43-76 (1997).
Henry, P., X. Le Pichon, S. Lance, J. B. Martin, J. P. Foucher, A. Fiala-Medioni, F. Rostek, N. Guilhaumou, V. Pranal and M. Castrec, Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: Results from Manon cruise, J. Geophys. Res., 101, 20297-20323 (1996).
Hovland, M., A. Hill and D. Stokes, The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology, 12, 24-37 (1997).
Hunt, J. M., Petroleum Geochemistry and Geology, W. H. Freeman and Co, San Franciso (1979).
IPCC Working Group I, Climate change 2001: Scientific Basis, Cambridge University, London (2001)
Judd, A., G. Davies, J. Wilson, R. Holmes, G. Baron and I. Bryden, Contribution to atmospheric methane by natural seepages on the UK continental shelf. Mar. Geol., 137 (1/2), 165-189 (1997).
Kent, D. V., B. S. Cramer, L. Lanci, D. Wang, J. D. Wright and R. Van der Voo, A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 211, 13-26 (2003).
Kopf, A., A. H. F. Robertson, M. B. Clennell and R. Flecker, Mechanism of mud extrusion on the Mediterranean Ridge. Geo-Marine Lett., 18, 97-114 (1998).
Kopf, A., Fate of sediment during plate convergence at the Mediterranean Ridge accretionary complex: volume balance of mud extrusion versus subduction-accretion. Geology, 27, 87-90 (1999).
Kopf, A., A. Deyhle and E. Zuleger, Evidence for deep fluid circulation and gas hydrate dissociation using boron and boron isotopes of pore fluids in forearc sediments from Costa Rica (ODP Leg 170). Mar. Geol., 167, 1-28 (2000).
Kopf, A., D. Klaeschen and J. Mascle, Extreme efficiency of mud volcanism in dewatering accretionary prisms. Earth Planet. Sci. Lett., 189, 295-313 (2001).
Kopf, A. J. Significance of mud volcanism. Rev. Geophys., 40, 1-51 (2002).
Kopf, A. and A. Deyhle, Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling. Chem. Geol., 192, 195-210 (2002).
Law, K. S., and E. G. Nisbet, Sensitivity of the CH4 growth rate to changes in CH4 emissions from natural gas and coal. J. Geophys. Res., 101 (D9), 14387-14397 (1996).
Lelieveld, J., P. Crutzen and F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 50B, 128-150 (1998).
Liu, C. S., I. L. Huang and L. S. Teng, Structural features off southwestern Taiwan. Mar. Geol., 137, 305-319 (1997).
Macdonald, I. R., N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen and J. M. Brooks, Natural oil slicks in the Gulk of Mexico visible from space, J. Geophys. Res., 98 (C9), 16351-16364 (1993).
Martinelli, G., and G. Ferrari, Earthquake forerunners in a selected area of Northern Italy: Recent developments in automatic geochemical monitoring. Tectonophysics, 193, 397-410 (1991).
Mazurenko, L. L., V. A. Soloviev, J. M. Gardner and M. K. Ivanov, Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water. Mar. Geol., 195, 201-210 (2003).
Milkov, A. V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29-42 (2000).
Morner, N. A., and G. Etiope, Carbon degassing from the lithosphere. Global Planet. Change, 33 (1-2), 185-203 (2002).
Pakhomov, S. I., and I. G. Kissin, More information about the geochemistry of carbon dioxide in subsurface zones of the hydrosphere. Dokl. Akad. Nauk SSSR, 180, 194-197 (1968).
Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky and T. Brown, The isotopic composotion of atmospheric methane. Global Biogemchem. Cycles, 13, 445-461 (1999).
Ridgwell, A. J., S. J. Marshall and K. Gregson, Consumption of atmospheric methane by soils: A process-based model. Global Biogeochem. Cycles, 13, 59-70 (1999).
Sano, Y., N. Takahata, Y. Nishio, T. P. Fischer and S. N. Williams, Volcanic flux of nitrogen from the Earth. Chem. Geol., 171, 263-271 (2001).
Schmitz, B., F. Asaro, E. Molina, S. Monechi, K. Salis and R. Speijer, High resolution iridium, δ13C, δ18O, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 133, 49–68 (1997).
Shih, T. T., A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Pet. Geol. Taiwan, 5, 259-310, (1967)
Van Soest, M. C., D. R. Hilton and R. Kreulen, Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim. Cosmochim. Acta, 62 (19/20), 3323-3335 (1998).
Welhan, J. A., Origins of methane in hydrothermal systems. Chem. Geol., 71, 183-198 (1988).
Whiticar, M. J., Carbon and hydrogen isotopes systematic of bacterial formation and oxidation of methane. Chem. Geol., 161, 291-314 (1999)