簡易檢索 / 詳目顯示

研究生: 邱萬鍾
Chiou, Wan-Jung
論文名稱: 以全向移動機器人為致動器之二維倒單擺平衡控制
Balance Control of a Two-Dimensional Inverted Pendulum Acuated by an Omnidirectional Mobile Robot
指導教授: 何明字
Ho, Ming-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 246
中文關鍵詞: 二維倒單擺全向移動機器人數位訊號處理器LQR順滑模態
外文關鍵詞: Two-Dimensional Inverted Pendulum, Omnidirectional Mobile Robot, Digital Signal Processor, LQR, Sliding mode
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 倒單擺系統在學術研究與控制教育實驗上為常見之機電系統,因為其機械結構簡單,同時又具有非線性及欠致動性之特點,因此常被用來驗證許多先進的控制理論;全向移動機器人為一種特殊之輪式機器人,具有可在平面上任意方向移動而不需改變其姿態的優點,在控制上具有較佳之機動性與靈活性。本論文旨在將倒單擺系統結合全向移動機器人,以建構二維倒單擺平衡控制系統。論文中將以Euler-Lagrange方法建立倒單擺系統之動態數學模型,並針對此模型利用LQR控制法則與順滑模態控制法則設計平衡控制器。在實作上,本系統使用德州儀器公司(Texas Instruments, TI)所生產的數位訊號處理器TMS320F2812做為控制核心以實現所有控制法則,並配合周邊介面電路,進而完成倒單擺平衡控制之目的。

    The inverted pendulum system is a common electromechanical system for academic researches and control-education experiments. Because of its simplicity of the mechanical structure with the underactuated and nonlinear characteristics, it is often used to verify the advanced control schemes. The omnidirectional mobile robot is a special type of wheeled robots, which can arbitrarily move on a plane without changing its pose and has good mobility and flexibility in control. The objective of this thesis is to combine the inverted pendulum system with the omnidirectional mobile robot to construct a two-dimensional inverted pendulum control system. In this thesis, the Euler-Lagrange method is used to derive the dynamic model of the system. Then, the LQR control law and the sliding mode control law are designed for balance control of this system. In the experiments, the designed controllers are implemented on a digital signal processor (TMS320F2812) produced by Texas Instruments. Then, combining the digital signal processor with the relevant peripheral interface circuits, balance control of the two-dimensional inverted pendulum system actuated by an omnidirectional mobile robot is achieved.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VIII 第一章 緒論 1-1 研究背景 1-1 1-2 研究動機及目的 1-1 1-3 研究步聚 1-4 1-4 相關文獻回顧 1-6 1-5 本實驗室之相關成果 1-9 1-6 本文結構 1-10 第二章 二維倒單擺系統數學模型 2-1 前言 2-1 2-2 二維倒單擺系統數學模型之建立 2-2 2-3 全向移動機器人機構部份動態模型之建立 2-18 2-4 直流伺服馬達數學模型與其參數識別 2-21 2-5 全向移動機器人整體系統數學模型 2-30 2-6 系統控制力與控制電壓之轉換關係 2-33 第三章 順滑模態控制理論之探討 3-1 前言 3-1 3-2 順滑模態之介紹 3-2 3-3 順滑條件與迫近條件之探討 3-2 3-4 傳統順滑模態設計方法 3-4 3-5 滑動層的考量 3-7 3-6 積分型順滑模態之介紹[32] 3-9 3-7 積分型順滑模態設計方法 3-14 3-8 非線性機電系統順滑模態控制設計方法[32] 3-18 第四章 軌跡追蹤控制器設計與模擬結果 4-1 前言 4-1 4-2 狀態回授線性化控制器設計 4-2 4-3 積分型順滑模態軌跡追蹤控制器之設計 4-3 4-4 PID控制器模擬結果 4-10 4-4-1 直線軌跡 4-12 4-4-2 弦波軌跡 4-15 4-4-3 圓形軌跡 4-19 4-5 積分型順滑模態控制器模擬結果 4-22 4-5-1 直線軌跡 4-23 4-5-2 弦波軌跡 4-26 4-5-3 圓形軌跡 4-30 4-6 軌跡追蹤控制器模擬響應比較 4-33 第五章 平衡控制器設計與模擬結果 5-1 前言 5-1 5-2 LQR平衡控制器設計方法 5-2 5-3 LQR平衡控制器模擬結果 5-9 5-4 非線性系統順滑模態控制器設計 5-15 5-5 非線性系統順滑模態控制器模擬結果 5-22 5-6 模擬響應的性能比較 5-27 第六章 二維倒單擺系統機構設計與製作 6-1 前言 6-1 6-2 全向移動機器人機構設計與製作 6-2 6-3 倒單擺連結機構設計與製作 6-8 第七章 系統控制核心晶片與周邊電路介紹 7-1 前言 7-1 7-2 控制核心晶片與模組 7-1 7-2-1 數位訊號處理器TMS320F2812 7-2 7-2-2 QEP介面 7-3 7-2-3 PWM介面 7-4 7-2-4 通用型輸入輸出(General Purpose I/O, GPIO)介面 7-9 7-3 FPGA數位電路模組 7-10 7-3-1 FPGA 7-11 7-3-2 DSP記憶體位址解碼電路 7-12 7-3-3 QEP (Quadurature Encoder Pulse)電路 7-14 7-4 PWM馬達驅動模組 7-18 7-5 系統整體架構 7-22 第八章 軌跡追蹤實作結果 8-1 前言 8-1 8-2 系統程式流程及整體控制系統架設 8-1 8-3 PID軌跡追蹤控制器之實作結果 8-4 8-3-1 直線軌跡追蹤實驗 8-4 8-3-2 弦波軌跡追蹤實驗 8-7 8-3-3 圓形軌跡追蹤實驗 8-11 8-4 積分型順滑模態追蹤控制器之實作結果 8-14 8-4-1 直線軌跡追蹤實驗 8-14 8-4-2 弦波軌跡追蹤實驗 8-18 8-4-3 圓形軌跡追蹤實驗 8-21 8-5 軌跡追蹤控制器實作響應之比較 8-25 第九章 平衡控制實作結果 9-1 前言 9-1 9-2 系統程式流程及整體控制系統架設 9-1 9-3 LQR控制器之平衡控制實現 9-4 9-4 順滑模態控制器之平衡控制實現 9-15 9-5 平衡控制器之實作響應比較 9-27 第十章 結論與未來展望 10-1 結論 10-1 10-2 未來展望 10-1 參考文獻 Ref-1

    [1] J. F. Schaefer and R. H. Cannon, “On the Control of Unstable Mechanical Systems,” Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1, 1967.
    [2] J. Collado, R. Lozano, and I. Fantoni, “Cotrol of Convey-Crane Based on Passivity,” Proceedings of the American Control Conference, pp. 1260-1264, 2000.
    [3] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
    [4] M. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,” Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 1, pp. 555-556, 1995.
    [5] O. S. Reza, “Global Stabilization of a Flat Underactuated system: The Inertia Wheel Pendulum,” Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 4, pp. 3764-3765, 2001.
    [6] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年。
    [7] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年。
    [8] 林鈺翔,「雙連桿倒單擺系統甩上與平衡控制」,國立成功大學工程科學系碩士論文,民國九十一年。
    [9] 翁義清,「全向移動機器人之路徑追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
    [10] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
    [11] 顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年。
    [12] 洪聆剛,「兩輪倒單擺機器人之平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
    [13] C. Y. Chung, S. M. Lee, J. M. Lee, and B. H. Lee,“Balancing of an Inverted Pendulum with a Kinematically Redundant Robot,”IEEE International Conference on Intelligent Robots and Systems, Vol. 1, pp. 191-196, 1999.
    [14] R. Yang, Geometric Techniques for Control of a 2-DOF Spherical Inverted Pendulum, Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology, Hong Kong, 2000.
    [15] W. Stefan,“2DOF Inverted Pendulum,”EL2420 Control System Project, KTH Royal Institute of Technology, 2008.
    [16] S. Bernhard, K. Ladislav, and M. Safer, “Balancing of an Inverted Pendulum with a SCARA Robot,”IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 2, pp. 91-97, 1998.
    [17] M. Janthong, Design and Implementation of Control Concepts for Image-Guided Object Movement, Department of Faculty of Engineering, Rajamangala University of Technology Thunyaburi, Thailand, 2006.
    [18] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, Vol. 22, No. 3, pp. 315-330, 1998.
    [19] K. S. Byun, S. J. Kim, and J. B. Song, “Design of a Four-Wheeled Omnidirectional Mobile Robot with Variable Wheel Arrangement Mechanism,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, pp. 720-725, 2002.
    [20] C. C. Tsai, L. B. Jiang, T. Y. Wang, and T. S. Wang, “Kinematics Control of an Omnidirectional Mobile Robot,” Proceedings of 2005 CACS Automatic Control Conference, Tainan, Taiwan, pp. 13-18, 2005.
    [21] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic Model with Slip for Wheeled Omnidirectional Robots,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 3, pp. 285-293, 2002.
    [22] Y. Liu, X. Wu, J. J. Zhu, and J. Lew, “Omni-Directional Mobile Robot Controller Design by Trajectory Linearization,” Proceedings of the American Control Conference, pp. 3423-3428, 2003.
    [23] 凌朝雄,「慣性輪單擺之非線性控制」,國立成功大學工程科學系碩士論文,民國九十三年。
    [24] 詹富強,「以數位信號處理器為基礎單板獨立旋轉型倒單擺甩上與平衡控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十三年。
    [25] S. H. żak, Systems and Control, Oxford Univeristy Press, NY, 2003.
    [26] R. Ortega, A. Loria, P. J. Nicklasson, and H. S. Ramirez, Passivity-Based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications, Springer-Verlag, London, 1998.
    [27] 劉士源,「以回授線性化與順滑模態控制之球與球系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十八年。
    [28] 蕭天賜,「以數位訊號處理器為基礎之多功能控制平台的研製」,國立成功大學工程科學系碩士論文,民國九十五年。
    [29] M. A. Aizerman and F. R. Gantmarkher, “On Some Features of Switchings in Nonlinear Control with a Piecewise-Smooth Response of the Nonlinear Element,” Avmatika I Telemekhanika, 1957.
    [30] V. I. Utkin, “Variable Structure Systems with Sliding Mode,” IEEE Transactions on Automatic Control, Vol. 39, pp. 1466-1470, 1977.
    [31] V. I. Utkin, Sliding Modes in Optimization and Control, Springer-Verlag, NY, 1992.
    [32] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical System, CRC Press, Boca Raton, 1999.
    [33] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, 1991.
    [34] B. C. Kuo, Automatic Control Systems, Prentice Hall, Upper Saddle River, NJ, 1997.
    [35] H. K. Khalil, Nonlinear System, Prentice Hall, Upper Saddle River, 1996.
    [36] TMS320F281X Digital Signal Processors Data Manual, Texas Instrunents, 2001.
    [37] Cyclone Device Handbook, ALTERA, 2002.

    下載圖示 校內:2017-07-20公開
    校外:2017-07-20公開
    QR CODE