簡易檢索 / 詳目顯示

研究生: 梁聖杰
Liang, Sheng-Jie
論文名稱: 功能性壓電材料圓柱殼受單軸壓力作用下之挫屈分析
Buckling Analysis of Functionally Graded Piezoelectric Cylindrical Shells under Axial Compression
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 50
中文關鍵詞: 挫屈圓柱殼有限層殼法功能性梯度壓電材料Reissner混合變分原理三維分析
外文關鍵詞: buckling, cylinders, finite layer methods, functionally graded piezoelectric material, Reissner’s mixed variational theorem, three-dimensional analysis
相關次數: 點閱:157下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於Reissner混合變分原理(Reissner’s mixed variational theorem, RMVT)有限圓柱層殼法(finite cylindrical layer methods, FCLMs)之歸一理論,發展具簡支承之疊層壓電中空圓柱殼嵌入功能性梯度彈性材料(functionally graded elastic material, FGEM)核心層之擬三維(quasi-three-dimensional, quasi-3D)挫屈分析。這類圓柱殼承受軸向壓力並在內、外表面上具有開放或封閉迴路邊界條件。使用三維線性挫屈理論,其中一組薄膜應力是由挫屈前狀態預先定義的三維位移場推衍求得。FGEM核心層則依兩相材料之體積分率的冪級數函數組合而成,其有效材料性質將以兩相材料混合原理(the rule of mixtures)和Mori-Tanaka微觀定理來估計。數值範例中使用不同階數在厚度方向擴展彈性場和電場變數的FCLM解,藉由比較它們的解與文獻提供的三維精確解來評估FCLM之精度和收斂率。文中亦綜合探討材料性質梯度指標、不同表面條件和長-厚比對圓柱殼臨界挫屈載重之影響。

    A unified formulation of Reissner’s mixed variational theorem-based finite cylindrical layer methods (FCLMs) is developed for the quasi-three-dimensional (3D) buckling analysis of simply-supported, sandwich piezoelectric circular hollow cylinders embedded with a functionally graded elastic material (FGEM) core. These cylinders are subjected to axial compression and with open-/closed-circuit boundary conditions on the lateral surfaces. A 3D linear buckling theory is used, in which a set of membrane stresses is determined using a set of predefined 3D deformations for the pre-buckling state. The material properties of the FGEM core are assumed to obey the power-law distributions varying through the thickness coordinate of this according to the volume fractions of constituents, and their effective material properties are estimated using the rule of mixtures and Mori-Tanaka’s micromechanics scheme. The accuracy and convergence rate of the FCLMs with various orders used for expanding the elastic and electric variables in the thickness direction are assessed by comparing their solutions with the exact 3D ones available in the literature. A parametric study with regard to the effects of material-property gradient index, different surface conditions and aspect ratios on the critical loads of the cylinder are undertaken.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 功能性梯度彈性材料核心層的有效材料性質 5 2.1功能性梯度奈米碳管加勁複合材料核心層 5 2.2功能性梯度兩相均向性材料混合之核心層 7 2.2.(a).兩相材料混合原理 7 2.2.(b) Mori-Tanaka定理 8 第三章 疊層壓電圓柱殼挫屈前狀態 9 第四章 疊層壓電圓柱殼臨界挫屈狀態 13 4.1場量主變數假設 13 4.2 Reissner混合變分原理 16 4.3 Euler-Lagrange方程式 19 第五章 數值範例 23 5.1疊層正交性複合材料中空圓柱殼 23 5.2奈米碳管加勁複合材料中空圓柱殼 25 5.3疊層功能性壓電材料中空圓柱殼 26 第六章 結論 29 參考文獻 30

    [1] Noor AK, Peters JM and Jeanne M. Buckling and postbuckling analyses of laminated anisotropic structures. Int J Numer Methods Eng 1989; 27: 383-401.
    [2] Noor AK, Burton WS and Peters JM. Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels. Appl Numer Math 1994; 14: 69-90.
    [3] Noor AK, Burtom WS and Bert CW. Computational models for sandwich panels and shells. Appl Mech Rev 1996; 49: 155-199.
    [4] Brischetto S and Carrera E. Classical and refined shell models for the analysis of nano-reinforced structures. Int J Mech Sci 2012; 55: 104-117.
    [5] Carrera E. Historical review of Zig-Zag theories for multilayered plates and shells. Appl Mech Rev 2003; 56: 287-308.
    [6] Swaminathan K, Naveenkumar DT, Zenkour AM and Carrera E. Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review. Compos Struct 2015; 120: 10-31.
    [7] Liew KM, Zhao X and Ferreira AJM. A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 2011; 93: 2031-2041.
    [8] Liew KM, Lei ZX and Zhang LM. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Compos Struct 2015; 120: 90-97.
    [9] Soldatos KP. Buckling of shear deformable antisymmetric angle-ply laminated cylindrical panels under axial compression. J Press Vess Technol 1992; 114: 353-357.
    [10] Soldatos KP and Ye JQ. Three-dimensional static, dynamic, thermoelastic and buckling analysis of homogeneous and laminated composite cylinders. Compos Struct 1994; 29: 131-143.
    [11] Ye JQ and Soldatos KP. Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels. Int J Solids Struct 1995; 32: 1949-1962.
    [12] Saravanos DA and Heyliger, PR. Mechanics and computational models for laminated piezoelectric beams, plates, and shells. Appl Mech Rev 1999; 52: 305-320.
    [13] Wu CP, Chiu KH and Wang YM. A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput Mater Continua 2008; 8: 93-132.
    [14] Zenkour AM. Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J Sandw Struct Mater 2013; 15: 629-656.
    [15] Zenkour AM. Thermomechanical bending responses of functionally graded nonsymmetric sandwich plates. J Sandw Struct Mater 2010; 12: 7-46.
    [16] Lurlaro L, Gherlone M and Sciuva MD. Bending and free vibration analysis of functionally graded sandwich plates using the refined zigzag theory. J Sandw Struct Mater 2014; 16: 669-699.
    [17] Sofiyev AH, Hui D, Najafov AM, Turkaslan S, Dorofeyskaya N and Yuan GQ. Influences of shear stresses and rotary inertia on the vibration of functionally graded coated sandwich cylindrical shells resting on the Pasternak elastic foundation. J Sandw Struct Mater 2015; doi: 10.1177/1099636215594560.
    [18] Bourada M, Tounsi A, Houari MSA and Bedia EAA. A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates. J Sandw Struct Mater 2012; 14: 5-33.
    [19] Carrera E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 2013; 10: 215-296.
    [20] Carrera E and Ciuffreda A. A unified formulation to assess theories of multilayered plates for various bending problems. Compos Struct 2005; 69: 271-293.
    [21] Ballhause D, Dottavio M, Kroplin B and Carrera E. A unified formulation to assess multilayered theories for piezoelectric plates. Comput Struct 2005; 83: 1217-1235.
    [22] Carrera E. Theories and finite elements for multilayered, anisotropic composite plates and shells. Arch Comput Methods Eng 2002; 9: 87-140.
    [23] Brischetto S and Carrera E. Refined 2D models for the analysis of functionally graded piezoelectric plates. J Intell Mater Syst Struct 2009; 20: 1783-1815.
    [24] Singha MK, Prakash T and Ganapathi M. Finite element analysis of functionally graded plates under transverse load. Fin Elem Anal Des 2011; 47: 453-460.
    [25] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Roy Soc Lod, Ser A 1957; 241: 376-396.
    [26] Yu TT, Yin S, Bui TQ and Hirose S. A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates. Fin Elem Anal Des 2015; 96: 1-10.
    [27] Tran LV, Thai CH and Nguyen-Xuan H. An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Fin Elem Anal Des 2013; 73: 65-76.
    [28] Thai HT and Choi DH. Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Fin Elem Anal Des 2013; 75: 50-61.
    [29] Reissner E. On a certain mixed variational theory and a proposed application. Int J Numer Methods Eng 1984; 20: 1366-1368.
    [30] Reissner E. On a mixed variational theorem and on a shear deformable plate theory. Int J Numer Methods Eng 1986; 23: 193-198.
    [31] Cinefra M, Carrera E, Della Croce L and Chinosi C. Refined shell elements for the analysis of functionally graded structures. Compos Struct 2012; 94: 415-422.
    [32] Cinefra M and Carrera E. Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures. Int J Numer Methods Eng 2013; 93: 160-182.
    [33] Cinefra M and Carrera E. Variable kinematic shell elements for the analysis of electro-mechanical problems. Mech Adv Mater Struct 2015; 22: 77-106.
    [34] Carrera E and Robaldo A. Hierarchic finite elements based on a unified formulation for the static analysis of shear actuated multilayered piezoelectric plates. Multid Model Mater Struct 2010; 6: 45-77.
    [35] Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-58.
    [36] Coleman JN, Khan U, Blau WJ and Gun’ko YK. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006; 44: 1624-1652.
    [37] Esawi AMK and Farag MM. Carbon nanotube-reinforced composites: potential and current challenges. Mater Des 2007; 28: 2394-2401.
    [38] Ramaratnam A and Jalili N. Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to next-generation sensors. J Intell Mater Syst Struct 2006; 17: 199-208.
    [39] Thostenson ET, Ren Z and Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 2001; 61: 1899-1912.
    [40] Chou TW, Gao L, Thostenson ET, Zhang Z and Byun JH. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 2010; 70: 1-19.
    [41] Davis DC, Wilkerson JW, Zhu J and Hadjiev VG. A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 2011; 71: 1089-1097.
    [42] Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech 1984; 51: 745-752.
    [43] Reddy JN. A refined nonlinear theory of plates with transverse shear deformation. Int J Solids Struct 1984; 20: 881-896.
    [44] Shen HS and Zhang CL. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 2010; 31: 3403-3411.
    [45] Shen HS. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos: Part B-Eng; 43: 1030-1038.
    [46] Zhao X, Li Q, Liew KM and Ng TY. The element-free-Ritz method for free vibration analysis of conical shell panels. J Sound Vibr 2006; 295: 906-922.
    [47] Liew KM, Wang J, Tan MJ and Rajendran S. Postbuckling analysis of laminated composite plates using the mesh-free kp-Ritz method. Comput Meth Appl Mech Eng 2006; 195: 551-570.
    [48] Zhao X, Liew KM and Ng TY. Vibration analysis of laminated composite cylindrical panels via a meshless approach. Int J Solids Struct 2003; 40: 161-180.
    [49] Lei ZX, Liew KM and Yu JL. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct 2013; 106: 128-138.
    [50] lei ZX, Liew KM and Yu JL. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 2013; 98: 160-168.
    [51] Mori T and Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973; 21: 571-574.
    [52] Zhang LW, Lei ZX, Liew KM and Yu JL. Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct 2014; 111: 205-212.
    [53] Zhang LW, Lei ZX, Liew KM and Yu JL. Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput Methods Appl Mech Engrg 2014; 273: 1-18.
    [54] Cheung YK and Chakrabarti S. Free vibration of thick, layered rectangular plates by finite layer methods. J Sound Vibr 1972; 21: 277-284.
    [55] Zhou D, Cheung YK and Kong J. Free vibration of thick, layered rectangular plates with point supports by finite layer methods. Int J Solids Struct 2000; 37: 1483-1499.
    [56] Cheung YK and Jiang CP. Finite layer method in analysis of piezoelectric composite laminates. Comput Methods Appl Mech Eng 2001; 191: 879-901.
    [57] Akhras G and Li WC. Three-dimensional thermal buckling analysis of piezoelectric composite plates using a finite layer method. Smart Mater Struct 2008; 17: 055004.
    [58] Akhras G and Li WC. Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using a finite layer method. J Intell Mater Sys Struct 2010; 21: 719-727.
    [59] Akhras G and Li WC. Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using a finite layer method. Compos Struct 2010; 92: 31-38.
    [60] Akhras G and Li WC. Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method. Smart Mater Struct 2007; 16: 561-569.
    [61] Wu CP and Li HY. The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates. Compos Struct 2010; 92: 2476-2496.
    [62] Wu CP and Li HY. An RMVT-based finite rectangular prism rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions. CMC-Comput Mater Continua 2013; 34: 27-62.
    [63] Wu CP and Li HY. RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions. Compos Struct 2013; 100: 592-608.
    [64] Wu CP and Chang YT. A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer. Compos: Part B-Eng 2012; 43: 3318-3333.
    [65] Eshelby JD. The elastic field outside an ellipsoidal inclusion. Proc Roy Soc Lond, Ser A 1959; 252: 561-569.
    [66] Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 1987; 6: 147-157.
    [67] Dunn ML and Taya M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int J Solids Struct 1993; 30: 161-175.
    [68] Ramirez F and Heyliger PR. Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech Adv Mater Struct 2006; 13: 249-266.
    [69] Ramirez F, Heyliger PR and Pan E. Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos Part B-Eng 2006; 37: 10-20.
    [70] Wu CP and Huang SE. Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method. CMC-Comput Mater Continua 2009; 12: 251-282.
    [71] Wu CP and Tsai TC. Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method. Appl Math Modell 2012; 36: 1910-1930.
    [72] D’Ottavio M. Variable-kinematics approach for linearized buckling analysis of laminated plates and shells. AIAA J 2010; 48: 1987-1996.
    [73] Wu CP and Jiang RY. A state space differential reproducing kernel method for the buckling analysis of carbon nanotube-reinforced composite circular hollow cylinders. CMES-Comput Model Eng Sci 2014; 97: 239-279.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE