簡易檢索 / 詳目顯示

研究生: 楊博淳
Yang, Bo-Chun
論文名稱: 以微波輔助水熱法來合成 SnO 奈米顆粒之研究
Synthesis of SnO Nanoparticles Using Microwave-assisted Hydrothermal Method
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: SnO微波水熱法小尺寸結晶性純度分散性
外文關鍵詞: Stannous oxide, microwave-assisted hydrothermal method, small particle size, crystalline, purity, dispersion
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以SnCl2·2H2O為前驅物,藉由微波輔助水熱技術,合成出高純度、結晶性佳的SnO奈米顆粒。有別於其他文獻,本研究還從控制溶液pH值、微波加熱溫度以及微波加熱時間等方面出發,提高了SnO的結晶性及純度,且所合成出的SnO其粒徑可以維持在40奈米以下,但由於所合成出的SnO顆粒聚集性嚴重,分散性差,所以,本研究另外還藉由化學方式(異質成核、改變反應物濃度)以及物理方式(改變基板狀態、聚集時間)來對SnO顆粒沉積於基板上的分散性進行改善。而除了合成出小尺寸,分散性佳的SnO,本研究還進一步將所合成出的SnO成功應用在成長TiO2奈米線上。而因為TiO2奈米線不論是在染料敏化太陽能電池或是光觸媒等元件上皆具有相當重要的應用發展,所以也增加了本研究所合成出的SnO其未來應用發展性。最後,本研究利用掃描式電子顯微鏡(SEM)來觀察SnO奈米顆粒之外觀形貌。而在SnO微結構方面則是藉由穿透式電子顯微鏡(TEM)、薄膜X光繞射分析儀(TFXRD)來對其進行結構分析,至於化學成分方面則是使用X光電子能譜儀(XPS)加以測定。

    SnO nanoparticles with high purity and good crystalline were just synthesized by using SnCl2.2H2O as a precursor and by means of microwavw-assisted hydrothermal technique in this research。 Different from other literatures,our research just increased crystalline and purity of SnO in terms of controlling pH value of solution、temperature and time of microwave heating,and the particle size of SnO could be retained under 40 nm,but because the aggregation of SnO was just serious,so the dispersion of SnO depositing on ITO-glass also improved by means of chemical and physical methods in this research。 In addition to synthesizing small particle size and good dispersion of SnO,we also growed up TiO2 nanowires successfully by SnO which we synthesized in this research。And because TiO2 nanowires had very important application no matter was on dye- sensitized solar cells or photocatalysis,so the potential of SnO which we synthesized was just increasing。 The morphologies of SnO nanoparticles were analyzed by scanning electron microscope (SEM)。And the microstructures were investigated by transmission electron microscopy (TEM) and X-Ray Thin-Film Diffractometer。 II
    Final,the chemical compositions were examined using X-ray photoelectron spectroscopy (XPS)。

    摘要…..…………………......…………………………………………..Ⅰ Abstract………………………………………………………………….Ⅱ 誌謝………………………………………………………………….... .Ⅳ 總目錄………………………………………………….……………….Ⅴ 表目錄…………………………………………………………………..Ⅷ 圖目錄…………………………………………………………………..Ⅸ 第一章 緒論……………………………………………………………..1 1-1 前言………………………………………………………...1 1-2 研究動機…………………………………………………...4 第二章 文獻回顧………………………………………………………..8 2-1 SnO簡介…………………………………………………...8 2-2 各種製備SnO的文獻探討……………………………….11 2-2-1 熱裂解法,熱蒸鍍法,熱回流法…………………..12 2-2-2 溶劑熱法,傳統水熱法……………………………13 2-3 微波輔助水熱法合成SnO…………………….....………21 2-3-1 微波簡介…………………………………………..21 2-3-2 微波加熱原理介紹………………………………..22 2-3-3 微波加熱的特點…………………………………..28 2-3-4 微波水熱法與傳統水熱法的比較………………..29 2-3-5 以微波輔助水熱法合成SnO相關文獻探討…….35 第三章 實驗方法與分析儀器原理……………………………………43 3-1 實驗藥品及器材………….………………….…………...43 3-2 實驗設計和流程………………….……………….……...43 3-3 以微波水熱法合成SnO奈米顆粒……….……………...46 3-4 磁控濺鍍沉積技術……………….………………….…...48 3-5 樣品特性分析…………..………………………………...51 3-5-1 掃瞄式電子顯微鏡 (SEM)……………………….51 3-5-2 X光能量分散儀 (EDX)………………………….51 3-5-3 X光粉末繞射儀 (XRD)、………………………..52 X光薄膜繞射儀 (X-Ray Thin-Film Diffractometer) 3-5-4 電子光譜儀化學分析 (XPS)……………………..52 3-5-5 高解析穿透式電子顯微鏡分析 (HR-TEM)……..53 第四章 結果與討論……………………………………………………55 4-1 以傳統水熱法及微波水熱法合成SnO之研究………….55 4-1-1 水熱時間的影響…………………………………..55 4-1-2 溶液pH值的影響……………………………..…..60 VI 4-1-3 微波溫度的影響…………………………………..65 4-2 以化學方式改善微波水熱法合成SnO之顆粒聚集性….74 4-2-1 異質成核…………………………………………..74 4-2-2 不同反應物濃度…………………………………..85 4-3 以物理方式改善微波水熱合成SnO之顆粒聚集性…..100 4-3-1 基板狀態…………………………………………100 4-3-2 聚集時間…………………………………………111 4-4 SnO用於成長TiO2奈米線之研究……….…………...118 第五章 結論…………………………………………………………..129 第六章 未來展望………………………………………………..……130 第七章 參考文獻……………………………………………………..131 附錄…………………………………………………………………....142 自述……………………………………………………………………144

    [1] S.Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56
    [2] N. Negishi, K. Takeuchi and T. Ibusuki, “Structural changes of transparent TiO2 thin films with heat treatment,” Appl. Surf. Sci. 121-122 (1997) 417
    [3] B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353 (1991) 737
    [4] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang,“Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the Oriented Attachment Mechanism,”J. Am. Chem. Soc.126 (2004) 14943
    [5] M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, “Low-temperature fabrication of dye-sensitizedsolar cellsby transfer of composite porous layers,” Nat. Mater.4 (2005) 607
    [6] C.H. Lu, W.H. Wu and R.B. Kale, “Synthesis of photocatalytic TiO2 thin films via the high-pressure crystallization process at low temperatures,” J. Hazard. Mater. 147 (2007) 213
    [7] A.Y. Nosaka, J. Nishino, T. Fujiwara, T. Ikegami, H. Yagi, H. Akutsu 131 and Y. Nosaka, “Effects of Thermal Treatments on the Recovery of Adsorbed Water and Photocatalytic Activities of TiO2 Photocatalytic Systems,” J. Phys. Chem. B 110 (2006) 8380
    [8] J. Yu, L. Zhang, B. Cheng and Y. Su, “Hydrothermal Preparation and tocatalytic Activity of Hierarchically Sponge-like cro-/Mesoporous Titania,” J. Phys. Chem. C 111 (2007) 10582 PhoMa
    [9] K.R. Meier and M. Grätzel, “Redox Targeting of Oligonucleotides Anchored to Nanocrystalline TiO2 Films for DNA Detection,” ChemPhysChem 3 (2002) 371
    [10] S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky,K. Cizek, J. Jirkovsky and N. Petrova, “Transformation of brookite-type TiO2 nanocrystals to rutile correlation between microstructure and photoactivity,” J. Mater. Chem. 16 (2006) 1709
    [11] S.H. Lim, J. Luo, Z. Zhong, W. Ji and J. Lin, “Room-temperature hydrogen uptake by TiO2 nanotubes,” Inorg. Chem. 44 (2005) 4124
    [12] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P.D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4 (2005) 455
    [13] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism,” J. Am. Chem. Soc.126 (2004) 14943
    [14] Y. Yu and D. Xu, “Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts,” Appl. Catal. B: Environ. 73 (2007) 166
    [15] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y.W. Zhu, H.Z. Zhang and D.P. Yu, “Field-emission properties of TiO2 nanowire arrays,” J. Phys. D: Appl. Phys. 38 (2005) 1152
    [16] J.M. Wu, W.T. Wu and H.C. Shih, “Characterization of single-crystalline TiO2 nanowires grown by thermal evaporation,” J. Electrochem. Soc. 152 (2005) G613
    [17] J.M. Wu, H.C. Shih and W.T. Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation,” Nanotechnology 17 (2006) 105
    [18] B.M. Wen, C.Y. Liu and Y. Liu, “Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires,” New J. Chem. 29 (2005) 969
    [19] Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang and L.D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chem. Phys. Lett.365 (2002) 300.
    [20] H.S. Hafez, “Synthesis of highly-active single-crystalline TiO2 nanorods and its application in environmental photocatalysis,” Materials Letters 63 (2009) 1471
    [21] J. Jiu, S. Isoda, F. Wang and M. Adachi, “Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film,” J. Phys. Chem. B.110 (2006) 2087
    [22] J.M. Wu, H.C. Shin and W.T. Wu, “Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation,” Chem. Phys. Lett.413 (2005) 490
    [23] B. Liu and E.S. Aydil, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131 (2009) 3985
    [24] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa and C.A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass Synthesis Details and Applications,” Nano Lett.8 (2008) 3781
    [25] W.Y. Wu, Y.M. Chang and J.M. Ting, “Room-Temperature Synthesis of Single-Crystalline Anatase TiO2 Nanowires,” Crystal Growth & Design 10 (2010) 1646
    [26] S. Goldsmith, E. Çetinörgü, R.L. Boxman, “Modeling the optical properties of tin oxide thin films,” Thin Solid Films 517 (2009) 5146
    [27] N.E. Christensen and A. Svane, “Electronic and structural properties of SnO under pressure,”Physical Review B 72 (2005) 014109 pote a sin pyro
    [28] S. Cahen, N. David, J.M. Fiorani, A. Maıtre and M. Vilasi, “Thermodynamic modelling of the O–Sn system,” thermochimica acta 403 (2003) 275
    [29] Z.R. Dai, Z.W. Pan and Z.L. Wang, “Growth and structure evolution of novel tin oxide diskettes,” J. Am. Chem. Soc.124 (2002) 8673
    [30] A. Cabot, A. Vila` and J.R. Morante, “Analysis of the catalytic activity and electrical characteristics of different modified SnO2 layers for gas sensors,” Sensors and Actuators B 84 (2002) 12
    [31] P. Serrini, V. Briois, M.C. Horrillo, A. Traverse and L. Manes, “Chemical composition and crystalline structure of SnO2 thin films used as gas sensors,” Thin SoIid Films 304 (1997) 113
    [32] T. Fukano, T. Motohiro, T. Ida, and H. Hashizume, “Ionization ntials of transparent conductive indium tin oxide films covered with gle layer of fluorine-doped tin oxide nanoparticles grown by spray lysis deposition,” J. App. Phys. 97 (2005) 1
    [33] E. Elangovan and K. Ramamurthi, “Studies on optical properties of polycrystalline SnO2:Sb thin films prepared using SnCl2 precursor,” Cryst. Res. Technol. 38 (2003) 779
    [34] Y. Takahashi and Y. Wada, “Dip-coating of Sb-doped Sn02 films by ethanolamine-alkoxide method,” J. Electrochem. Soc. 137 (1990) 267
    [35] A. J. Bard, Marcel Dekker, New York, (1973) p.223
    [36] J. Ning, T. Jiang, K. Men, Q. Dai, D. Li, Y. Wei, B. Liu, G. Chen, B. Zou and G. Zou, “Syntheses, Characterizations, and Applications in Lithium Ion Batteries of Hierarchical SnO Nanocrystals,” J. Phys. Chem. C 113 (2009) 14140
    [37] X. Xu, M. Ge, K. Stahl and J.Z. Jiang, “Growth mechanism of cross-like SnO structure synthesized by thermal decomposition,” Chemical Physics Letters 482 (2009) 287
    [38] D.S. Wu and N.L. Wu, “Hydrothermal synthesis of submicron SnO crystallites,” J. Mater. Res. 15 (2000) 1445
    [39] Z. Han, N. Guo, F. Li, W. Zhang, H. Zhaoand Y. Qian, “Solvothermal preparation and morphological evolution of stannous oxide powders,” Materials Letters 48 (2001) 99
    [40] Z.J. Jia, L.P. Zhu, G.H. Liao, Y. Yu and Y.W. Tanga, “Preparation and characterization of SnO nanowhiskers,” Solid State Communications 132 (2004) 79
    [41] L. Zhu, H. Yang, D. Jin and H. Zhu, “Hydrothermal Synthesis of SnO Nanoflakes As Anode Materials for Lithium-Ion Batteries,” Inorganic Materials, 43 (2007) 1307
    [42] William D. Callister, JR., “Mater. Sci. and Enger. an introduction”, John Wiley & Sons
    [43] Saxena, Schaffer, Antolovich, Sander, Warner, “The Sci. and Design of Enger. Mater.”, McGraw-Hill International
    [44] Diance C. Folz, John H.Booske, David E. Clark, John F. Gerling, “Microwave and Radio Frequency Appl.”, journal of the American Ceramic Society
    [45] 周坤成著, “高周波的基礎與應用",文笙書局
    [46] G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz and G. D. Will, “Modification of TiO2 for enhanced surface properties -- Finite Ostwald ripening by a microwave hydrothermal process,” Langmuir 22 (2006) 2016
    [47] S.Komarneni, “Nano phase materials by hydrothermal, microwavehydrothermal and microwave-solvothermal methods,” Curr. Sci. 85 (2003) 1730
    [48] E.B. Celer and M. Jaroniec, “Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica,” J. Am. Chem. Soc. 128 (2006) 14408
    [49] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa and T. Tsuji, “Microwave-Assisted Synthesis of Metallic Nanostructures in Solution,” Chem. Eur. J. 11 (2005) 440
    [50] Y.J. Zhu, W.W. Wang, R.J. Qi and X.L. Hu, “Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids,” Angew. Chem., Int. Ed. 43 (2004) 1410
    [51] Y.J. Zhu and X.L. Hu, “Tellurium Nanorods and Nanowires Prepared by the Microwave-Polyol Method,” Chem. Lett. 33 (2004) 760
    [52] Y.J. Zhu and X.L. Hu, “Microwave-polyol Preparation of Single-crystalline Gold Nanorods and Nanowires,” Chem. Lett. 32 (2003) 1140
    [53] Y.J. Zhu and X.L. Hu, “Microwave-polythiol method. A new route to preparation of tellurium with various morphologies,” Chem. Lett. 32 (2003) 732
    [54] X.H. Liao, J.M. Zhu, J.J. Zhu, J.Z. Xu and H.Y. Chen, “Preparation of monodispersed nanocrystalline CeO 2 powders by microwave irradiation,” Chem.Commun. (2001) 937
    [55] J.A. Ayllon, A.M. Peiro, L. Saadoun, E. Vigil, X. Domenech and J. Peral, “Preparation of anatase powders from fluorine-complexed titanium (iv) aqueous solution using microwave irradiation,” J. Mater. Chem. 10 (2000) 1911
    [56] S. Komarneni, R.K. Rajha and H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Mater. Chem. Phys. 61 (1999) 50
    [57] S. Komarneni, R. Roy and Q.H. Li, “Microwave-hydrothermal synthesis of ceramic powders,” Mat. Res. Bull. 27 (1992) 1393
    [58] X. Xu, W. Yang, J. Liu and L. Lin, “Synthesis of a high-permeance NaA zeolite membrane by microwave heating,” Advanced Materials 12 (2000) 195
    [59] J. C. Jansen, A. Arafat, A. K. Barakat, H. van Bekkum, in Synthesis of Microporous Materials, Vol. 1 (Eds: M. L. Occelli, H. Robson), Van Nostrand Reinhold, New York 1992, p. 507.
    [60] G.J. Wilson, G.D. Will, R.L. Frost and S.A. Montgomery, “Efficient microwave hydrothermal preparation of nanocrystalline,” J. Mater. Chem. 12 (2002) 1787
    [61] S. Komarneni, R. K. Rajha and H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Mater. Chem. Phys. 61 (1999) 50
    [62] T. Brar, P. France and P.G. Smirniotis, “Control of Crystal Size and Distribution of Zeolite A,” Ind. Eng. Chem. Res. 40 (2001) 1133
    [63] M.D. Romero, J.M. Gomez, G. Ovejero and A. Rodriguez, “Synthesis of LSX zeolite by microwave heating,” Mater. Res. Bull. 39 (2004) 389
    [64] M. Sathupunya, E. Gulari and S. Wongkasemjit, “Microwave preparation of Li-zeolite directly from alumatrane and silatrane,” Mater. Chem. Phys. 83 (2004) 89
    [65] C.S. Cundy, R.J. Plaisted and J.P. Zhao, “Remarkable synergy between microwave heating and the addition of seed crystals in zeolite synthesis - a suggestion verified,” Chem. Commun. 63 (1998) 1465
    [66] M. Park and S. Komarneni, “Rapid synthesis of AlPO4-11 and cloverite by microwavehydrothermal processing,” Micropor. Mesopor. Mater. 20 (1998) 39
    [67] J.G. Carmona, R.R. Clemente and J.G. Morales, “Comparative preparation of microporous VPI-5 using conventional and microwave heating techniques,” Zeolites 18 (1997) 340
    [68] S.H. Jhung, J.S. Chang, J.S. Hwang and S.E. Park, “Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating,” Micropor. Mesopor. Mater. 64 (2003) 33
    [69] S.H. Jhung, T. Jin, Y.H. Kim and J.S. Chang, “Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation,” Micropor. Mesopor. Mater. 109 (2008) 58
    [70] F.I. Pires, E. Joanni, R. Savu, M.A. Zaghete, E. Longo and J.A. Varela, “Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders,” Materials Letters 62 (2008) 239
    [71] T. Krishnakumar, N. Pinna, K. P. Kumari, K. Perumal, R. Jayaprakash, “Microwave-assisted synthesis and characterization of tin oxide nanoparticles,” Materials Letters 62 (2008) 3437
    [72] A. Cirera, A. Vila, A. Dieguez, A. Cabot, A. Cornet and J.R. Morante, “Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders,” Sensors and Actuators B 64 (2000) 65
    [73] A. Cirera, A. Vila, A. Cornet and J.R. Morante, “Properties of nanocrystalline SnO2 obtained by means of a microwave process,” Materials Science and Engineering C 15 (2001) 203
    [74] A. Srivastava, S.T. Lakshmikumar, A.K. Srivastava and K.J. Rashmi, “Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique,” Sensors and Actuators B 126 (2007) 583
    [75] D.S. Wu, C.Y. Han, S.Y. Wang, N.L. Wu and I.A. Rusakova, “Microwave-assisted solution synthesis of SnO nanocrystallites,” Materials Letters 53 (2002) 155
    [76] H. Uchiyama, H. Ohgi and H. Imai, “Selective Preparation of SnO2 and SnO Crystals with Controlled Morphologies in an Aqueous Solution System,” Cryst. Growth Des. 6 (2006) 2186

    無法下載圖示 校內:2012-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE