簡易檢索 / 詳目顯示

研究生: 劉至軒
Liu, Chih-Hsuan
論文名稱: 次加勁材暨轉角效應於加勁擋土牆之數值分析研究
Numerical Analyses of Secondary Reinforcement and Turning Corner Effects on Geosynthetic-Reinforced Soil Walls
指導教授: 洪瀞
Hung, Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 135
中文關鍵詞: 加勁擋土牆次加勁材地震反應轉角效應有限元素
外文關鍵詞: geosynthetic-reinforced retaining wall, secondary reinforcement, seismic response, turning corner effects, finite element analyses
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文深究了當代加勁擋土牆設計指南及數值分析方法之相關問題,採取有限元素法分兩階段描述了:(一) 含次加勁材的加勁擋土牆於地震荷載作用下之二維動態行為反應﹔(二) 轉角效應對加勁擋土牆於工作應力條件下之三維行為反應。應用之二維以及三維有限元素法暨程序皆經過嚴謹的試驗場實驗或現地試驗驗證。
    第一階段:藉由模擬含次加勁材的現地加勁擋土牆和模塊地工合成加勁擋土牆振動台試驗,證實二維有限元素法具良好模擬現地以及振動台試驗結果後,再應用此模擬方法針對許多關鍵因子,如次加勁材長度和勁度、主要加勁材垂直間距、牆體高度,研究含次加勁材之加勁擋土牆於地震荷載作用下的動態行為反應。動態行為反應包含:相對側向牆面位移、主加勁連接力、最大軸力和放大效應等。在次加勁材的分析中獲得以下發現:(a) 當主加勁材為硬式網格時不同牆高和峰值地面加速度下的次加勁材長度和勁度對相對側向牆面位移和加速度放大效應的影響有限,但它們可以顯著的降低主加勁材的連接力和最大軸力;(b) 當主加勁材為硬式網格與增加次加勁材的勁度相比,增加次加勁材的長度對降低主加勁材的連接力和最大軸力更有效;(c) 當主加勁材為硬式網格當牆的高度越大,主加勁材的垂直間距越大和峰值地面加速度越小時,次加勁材的作用越明顯;(d) 次加勁材可以減緩放大效應。
    第二階段:三維有限元素模擬方法的驗證案例為加拿大皇家軍事學院所建立之全尺寸加勁擋土牆。藉由比對此經典案例,並獲得滿意的模擬與實驗對比結果後,本論文完整分析含轉角之加勁擋土牆於工作應力條件下的三維行為反應。三維行為反應包含:側向牆面位移、加勁材最大軸力、安全係數、潛在破壞面、牆面面板的垂直分離和轉角的種類。在轉角效應的分析中證實以下:(a) 最小側向牆面位移發生在轉角處;(b) 轉角處需要較低強度的加勁材;(c) 轉角越大,穩定性越低;(d) 在端壁較早形成潛在破壞面;(e) 在轉角處發現更深的潛在破壞面;(f) 在具有較小角度的牆上發現了更多的牆面面板垂直分離。
    藉由一系列完整的二維以及三維有限元素法驗證與模擬,本論文證實了次加勁材對加勁擋土牆在地震條件下之效益,特別是在減緩放大效應。在轉角效應方面,本論文明確指出三維分析可以反映所需的加勁材長度和潛在破壞面的不規則形成,唯牆面面板潛在的垂直分離數量與轉角有負相關。

    The study performs in-depth finite element analyses evaluating the seismic responses of geosynthetic-reinforced soil (GRS) walls with secondary reinforcement and the turning corner effects on the GRS walls. The numerical procedures were first verified through comparisons between the measured and simulated results from the tests. The validated numerical procedures were then utilized to investigate the influence of critical factors (e.g., secondary reinforcement length and stiffness, and turning corner angles) on the seismic responses of GRS walls with secondary reinforcement and the GRS walls with turning corners.
    For the GRS walls with secondary reinforcement, the results show (1) the length and stiffness of secondary reinforcement have insignificant influence on the acceleration amplification and relative lateral facing displacement and under various wall heights and PGAs, but they can significantly alleviate the maximum and connection loads in primary reinforcement; (2) to reduce the maximum and connection loads in primary reinforcement, increasing the length of secondary reinforcement is more effective; (3) the application of secondary reinforcement is more effective for higher wall, larger vertical spacing of primary reinforcement, and lower PGA.
    For the GRS walls with turning corner, the results show (1) the lateral displacement at the corner is the lowest; (2) the smaller reinforcement strength are needed at the corners; (3) lower stability occurs at higher corner angles; (4) deeper potential failure surface was developed at the corners; (5) more vertical separations are observed at wall with smaller angles.

    摘要 i Extended Abstract iv 致謝 xiii 目錄 xiv 表目錄 xvii 圖目錄 xviii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法及內容 4 1.3 研究流程 5 第二章 文獻回顧 7 2.1 前言 7 2.2 GRS結構動態行為相關之研究 8 2.2.1 物理試驗 8 2.2.2 數值分析 12 2.3 次加勁擋土牆之研究 16 2.4 帶轉角之GRS結構物設計相關規範 18 2.5 帶轉角之結構物過去相關研究 22 第三章 有限元素法 25 3.1 PLAXIS程式簡介 25 3.2 GRS結構材料組成律模型介紹 26 3.2.1 線彈性模型 26 3.2.2 莫爾庫倫模型 27 3.2.3 土壤硬化模型 28 3.2.4 小應變土壤硬化模型 30 3.2.5 土工格網模型 33 3.3 界面元素 34 3.4 動力分析 35 3.4.1 動態行為之基本方程式 35 3.4.2 時間積分 36 3.4.3 動態邊界 37 第四章 有限元素分析可行性驗證 39 4.1 含次加勁材的現地GRS結構 39 4.1.1 案例簡介 39 4.1.2 數值模擬 41 4.1.3 數值分析結果與監測結果比較 45 4.2 模塊地工合成加勁擋土牆之大型振動台試驗 46 4.2.1 案例簡介 46 4.2.2 數值模擬 48 4.2.3 數值分析結果與監測結果比較 51 4.3 加拿大皇家軍事學院GRS結構(三維驗證) 54 4.3.1 案例簡介 54 4.3.2 數值模擬 55 4.3.3 數值分析結果與監測結果比較 58 第五章 含次加勁材之GRS結構動力特性分析 61 5.1 設計模型建立 61 5.2 地震力和邊界條件 62 5.3 模擬結果與討論 63 5.3.1 次加勁材長度之影響 63 5.3.2 次加勁材勁度之影響 73 5.3.3 牆高之影響 83 5.3.4 主加勁材垂直間距之影響 86 5.3.5 峰值加速度之影響 88 第六章 帶轉角之GRS結構的數值模擬 91 6.1 GRS結構建模幾何和邊界條件 91 6.2 材料模型和參數 98 6.3 階段施工 99 6.4 模擬結果與討論 100 6.4.1 側向牆面位移 100 6.4.2 加勁材軸力 106 6.4.3 安全係數 113 6.4.4 潛在破壞面 115 6.4.5 牆面板的潛在垂直分離 117 6.4.6 三種類型轉角之比較 120 第七章 結論與建議 126 7.1 結論 126 7.2 建議 128 參考文獻 129

    1. Ausilio, E., Conte, E., Dente, G. (2000). Seismic stability analysis of reinforced slopes. Soil Dyn. Earthq. Eng. 19(3), 159-172.
    2. Anastasopoulos, I., Georgarakos, T., Georgiannou, V., Drosos, V., and Kourkoulis, R. (2010). Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model. Soil Dynamics and Earthquake Engineering, 30(10), 1089-1105.
    3. Ambauen, S., Leshchinsky, B., Xie, Y., Rayamajhi, D. (2015). Service-state behavior of reinforced soil walls supporting spread footings: a parametric study using finite-element analysis. Geosynth Int. 23(3), 156-170.
    4. Allen, T. M., and Bathurst, R. J. (2015). Improved simplified method for prediction of loads in reinforced soil walls. Journal of Geotechnical and Geoenvironmental Engineering, 141(11), 04015049.
    5. AASHTO (American Association of State Highway and Transportation Officials) (2014). LRFD bridge design specifications, 7th edn. Washington, DC, USA: AASHTO.
    6. Bathurst, R. J., and Cai, Z. (1994). In-isolation cyclic load-extension behavior of two geogrids. Geosynthetics International, 1(1), 1-19.
    7. Brinkgreve, R. B. J. and Vermeer, P. A. (1998). Finite Element Code for Soil and Rock Analyses, Version 7.2, Balkema, Rotterdam.
    8. Bathurst, R. J., & Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetics International, 5(1-2), 127-166.
    9. Bathurst, R.J., Walters, D., Vlachopoulos, N., Burgess, P., Allen, T.M. (2000). Full scale testing of geosynthetic reinforced walls, Invited keynote paper. In: Zornberg, J.G., Christopher, B.R. (Eds.), Proceedings of Geo-Denver 2000. American Society of Civil Engineers, ASCE Special Publication No.103, Advances in Transportation and Geoenvironmental Systems using Geosynthetics, pp. 201–217.
    10. Bathurst, R. J., Walters, D. L., Hatami, K., and Allen, T. M. (2001). Full-scale performance testing and numerical modelling of reinforced soil retaining walls. IS Kyushu preprint, 3-28.
    11. Blatz, J.A., Bathurst, R.J. (2003). Limit equilibrium analysis of large-scale reinforced and unreinforced embankments loaded by a strip footing. Can. Geotech. J. 40(6), 1084-1092.
    12. Bathurst, R. J., Miyata, Y., Nernheim, A., and Allen, A. M. (2008). Refinement of K-stiffness method for geosynthetic-reinforced soil walls. Geosynthetics International, 15(4), 269-295.
    13. Bhattacharjee, A., and Krishna, A. M. (2015). Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation. International Journal of Geosynthetics and Ground Engineering, 1(2), 1-14.
    14. BSI (2016). BS 8006-1:2010+A1:2016 Code of practice for strengthened/reinforced soils and other fills. London, UK: BSI.
    15. Cheng, Y. M., and Yip, C. J. (2007). Three-dimensional asymmetrical slope stability analysis extension of Bishop’s, Janbu’s, and Morgenstern–Price’s techniques. J. Geotech. Geoenviron. 133(12), 1544-1555.
    16. Chou, N. N., Liu, T. Y., Chen, P. H., Fan, C. C., & Zhang, J. (2020). Failure Investigation and sustainable renovation for slope at National Chi Nan University in Taiwan. Journal of Performance of Constructed Facilities, 34(5), 04020085.
    17. Duncan, J. M., and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics and Foundations Div.
    18. Dyer, M. R., and Milligan, G. W. E. (1984). A photoelastic investigation of the interaction of a cohesionless soil with reinforcement placed at different orientations. In: Proc., Int. Conf. on in Situ Soil and Rock Reinforcement. pp. 257-262.
    19. El-Emam, M. M., and Bathurst, R. J. (2007). Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls. Geotextiles and Geomembranes, 25(1), 33-49.
    20. Fakharian, K., and Attar, I. H. (2007). Static and seismic numerical modeling of geosynthetic-reinforced soil segmental bridge abutments. Geosynthetics International, 14(4), 228-243.
    21. Federal Highway Association (FHWA). (2009). “Design and construction of mechanically stabilized earth walls and reinforced soil slopes.” R. R. Berg, B. R. Christopher, and N. C. Samtani, eds., FHWA-NHI10-024, Washington, DC.
    22. Fan, C., Liu, H., Cao, J., and Ling, H. I. (2020). Responses of reinforced soil retaining walls subjected to horizontal and vertical seismic loadings. Soil Dynamics and Earthquake Engineering, 129, 105969.
    23. Giger, M.W., Krizek, R.J. (1975). Stability analysis of vertical cut with variable corner angle. Soils Found. 15(2), 63-71.
    24. Guler, E., Hamderi, M., and Demirkan, M. M. (2007). Numerical analysis of reinforced soil-retaining wall structures with cohesive and granular backfills. Geosynthetics International, 14(6), 330-345.
    25. Guler, E., & Selek, O. (2014). Reduced-scale shaking table tests on geosynthetic-reinforced soil walls with modular facing. Journal of Geotechnical and Geoenvironmental Engineering, 140(6), 04014015.
    26. Hardin, B.O., Drnevich, V.P. (1972). Shear modulus and damping in soils: Design equations and curves. Proc. ASCE: Journal of the Soil Mechanics and Foundations Division, 98(SM7), 667–692.
    27. Hatami, K., Bathurst R.J. (2005). Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can. Geotech. J. 42(4), 1066-1085.
    28. Han, J., and Leshchinsky, D. (2006). General analytical framework for design of flexible reinforced earth structures. Journal of geotechnical and geoenvironmental engineering, 132(11), 1427-1435.
    29. Huang, C. C., Horng, J. C., Chang, W. J., Chueh, S. Y., Chiou, J. S., & Chen, C. H. (2010). Dynamic behavior of reinforced slopes: horizontal acceleration response. Geosynthetics International, 17(4), 207-219.
    30. Hamderi, M., Guler, E., and Raouf, A. (2019). An investigation on the formation of cracks at the corner turns of the modular block earth walls. International Journal of Civil Engineering, 17(2), 219-230.
    31. Hung, C., Liu, CH., and Liu, HB. (2021). Three-dimensional finite element analysis of geosynthetic-reinforced soil walls with turning corners. Geotextiles and Geomembranes, 49(3), 629-645.
    32. Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. European Conferenceon Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 1, pp. 19–25
    33. Jewell, R.A. (1981). Some Effects of Reinforcement on Soils. Ph.D. thesis, University of Cambridge, UK.
    34. Jiang, Y., Han, J., Parsons, R. L., and Cai, H. (2015). Field monitoring of mechanically stabilized earth walls to investigate secondary reinforcement effects (No. KS-15-09). Kansas. Dept. of Transportation. Bureau of Research.
    35. Jiang, Y., Han, J., Parsons, R. L., and Brennan, J. J. (2016). Field instrumentation and evaluation of modular-block MSE walls with secondary geogrid layers. Journal of Geotechnical and Geoenvironmental Engineering, 142(12), 05016002.
    36. Jiang, Y., Han, J., Zornberg, J., Parsons, R. L., Leshchinsky, D., and Tanyu, B. (2018). Numerical analysis of field geosynthetic-reinforced retaining walls with secondary reinforcement. Géotechnique, 69(2), 122-132.
    37. Jiang, Y., Han, J., and Parsons, R. L. (2019). Numerical evaluation of secondary reinforcement effect on geosynthetic-reinforced retaining walls. Geotextiles and Geomembranes.
    38. Kondner, R.L. (1963). A hyperbolic stress strain formulation for sands. 2. Pan. Am. ICOSFE Brazil, 1, 289–324.
    39. Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
    40. Lysmer, J., Kuhlmeyer, R.L. (1969). Finite dynamic model for infinite media. ASCE J. of the ENg. Mech. Div., 859-87.
    41. Leshchinsky, D., Baker, R., and Silver, M. L. (1985). Three dimensional analysis of slope stability. Int. J. Numer. Anal. Methods Geomech. 9(3), 199-223.
    42. Leshchinsky, D., Boedeker, R.H. (1989). Geosynthetic reinforced soil structures. J. Geotech. Eng. 115(10), 1459-1478.
    43. Leshchinsky, D. (2000). Alleviating connection load. Geotechnical Fabrics Report, 18(8).
    44. Leshchinsky, D., and Vulova, C. (2001). Numerical investigation of the effects of geosynthetic spacing on failure mechanisms in MSE block walls. Geosynthetics International, 8(4), 343-365.
    45. Lyamin, A. V., and Sloan, S. W. (2001). Upper bound limit analysis using linear finite elements and nonlinear programming. In Finite elements: techniques and developments (pp. 131-145).
    46. Liu, H. (2002). Finite element simulation of the response of geosynthethic-reinforced soil walls. New York: Columbia University.
    47. Ling, H. I., Liu, H., Kaliakin, V. N., and Leshchinsky, D. (2004). Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. Journal of Engineering Mechanics, 130(8), 911-920.
    48. Ling, H. I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K., and Liu, H. (2005a). Large-scale shaking table tests on modular-block reinforced soil retaining walls. Journal of Geotechnical and Geoenvironmental engineering, 131(4), 465-476.
    49. Ling, H. I., Liu, H., and Mohri, Y. (2005b). Parametric studies on the behavior of reinforced soil retaining walls under earthquake loading. Journal of engineering mechanics, 131(10), 1056-1065.
    50. Latha, G. M., and Krishna, A. M. (2008). Seismic response of reinforced soil retaining wall models: influence of backfill relative density. Geotextiles and Geomembranes, 26(4), 335-349.
    51. Leshchinsky, D., Zhu, F., and Meehan, C. L. (2010). Required unfactored strength of geosynthetic in reinforced earth structures. J. Geotech. Geoenviron. 136(2), 281-289.
    52. Liu, H., Wang, X., and Song, E. (2010). Centrifuge testing of segmental geosynthetic-reinforced soil retaining walls subject to modest seismic loading. In GeoFlorida 2010: Advances in Analysis, Modeling and Design (pp. 2992-2998).
    53. Ling, H. I., Yang, S., Leshchinsky, D., Liu, H., and Burke, C. (2010). Finite-element simulations of full-scale modular-block reinforced soil retaining walls under earthquake loading. Journal of engineering mechanics, 136(5), 653-661.
    54. Liu, H., Wang, X., and Song, E. (2011). Reinforcement load and deformation mode of geosynthetic-reinforced soil walls subject to seismic loading during service life. Geotextiles and Geomembranes, 29(1), 1-16.
    55. Lee, K. Z. Z., & Chang, N. Y. (2012). Predictive modeling on seismic performances of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes, 35, 25-40.
    56. Liu, H. (2012). Long-term lateral displacement of geosynthetic-reinforced soil segmental retaining walls. Geotext. Geomembr. 32, 18-27.
    57. Liu, H., Won, M.S. (2014). Stress Dilatancy and Reinforcement Load of Vertical-Reinforced Soil Composite: Analytical Method. J Eng Mech. 140(3), 630-639.
    58. Liu, H., Yang, G., and Ling, H. I. (2014). Seismic response of multi-tiered reinforced soil retaining walls. Soil Dynamics and Earthquake Engineering, 61, 1-12.
    59. Leshchinsky, D., Kang, B., Han, J., and Ling, H. (2014). Framework for limit state design of geosynthetic-reinforced walls and slopes. Transportation Infrastructure Geotechnology, 1(2), 129-164.
    60. Latha, G. M., and Santhanakumar, P. (2015). Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests. Geotextiles and Geomembranes, 43(4), 307-316.
    61. Liu, H. (2015). Reinforcement Load and Compression of Reinforced Soil Mass under Surcharge Loading. J. Geotech. Geoenviron. 141(6),04015017.
    62. Liu, H. (2016a). Nonlinear Elastic Analysis of Reinforcement Loads for Vertical Reinforced Soil Composites without Facing Restriction. J. Geotech. Geoenviron. 142(6), 04016013.
    63. Liu, H. (2016b). Required reinforcement stiffness for vertical geosynthetic-reinforced-soil walls at strength limit state. Géotechnique 66(5), 424-434.
    64. Liu, H., Yang, G., Hung, C. (2017). Analyzing Reinforcement Loads of Vertical Geosynthetic-Reinforced Soil Walls Considering Toe Restraint. Int. J. Geomech. 17(6), 04016140.
    65. Liu, H., Hung, C., and Cao, J. (2018). Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111, 160-168.
    66. Liu, C. H., and Hung, C. (2020). Seismic Responses of GRS Walls with Secondary Reinforcements Subjected to Earthquake Loading. Applied Sciences, 10(20), 7084.
    67. Masing, G. (1926). Eigenspannungen und verfestigung beim messing. In In Proc. 2nd Int. Congr. Appl. Mech. Zurich.
    68. Michalowski, R. L. (1998). Limit analysis in stability calculations of reinforced soil structures. Geotext. Geomembr. 16(6), 311-331.
    69. Mirmoradi, S.H., Ehrlich, M. (2015). Numerical Evaluation of the Behavior of GRS Walls with Segmental Block Facing under Working Stress Conditions. J. Geotech. Geoenviron. 141(3), 04014109.
    70. Mirmoradi, S. H., and Ehrlich, M. (2018). Numerical simulation of compaction-induced stress for the analysis of RS walls under working conditions. Geotext. Geomembr. 46(3), 354-365.
    71. National Concrete Masonry Association (NCMA) (1997). Design manual for segmental retaining walls. National Concrete Masonry Association, Herndon, VA.
    72. Nian, T.K., Huang, R.Q., Wan, S.S., Chen G.Q. (2012). Three-dimensional strength-reduction finite element analysis of slopes: geometric effects. Can. Geotech. J. 49(5), 574-588.
    73. Panah, A. K., Yazdi, M., and Ghalandarzadeh, A. (2015). Shaking table tests on soil retaining walls reinforced by polymeric strips. Geotextiles and Geomembranes, 43(2), 148-161.
    74. Plaxis (2019). Reference and material models manual. Plaxis bv, Netherlands.
    75. Sluys, L.J. (1992). Wave propagation, Localisation and Dispersion in softening solids. dissertation, Delft University of Technology
    76. Santos, J.A., Correia, A.G. (2001). Reference threshold shear strain of soil. its application to obtain a unique strain-dependent shear modulus curve for soil. In Proceedings 15th International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, Turkey, volume 1, 267–270.
    77. Skejic, A., Medic, S., Dolarevic, S. (2018). Influence of wire mesh characteristic on reinforced soil model wall failure mechanisms-physical and numerical modelling. Geotext. Geomembr. 46(6), 726-738.
    78. Tognon, A. R., Rowe, R. K., and Brachman, R. W., 1999. Evaluation of side wall friction for a buried pipe testing facility. Geotext. Geomembr. 17(4), 193-212.
    79. Wei, W. B., Cheng, Y. M., and Li, L. (2009). Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Comput Geotech. 36(1-2), 70-80.
    80. Wang, L., Chen, G., and Chen, S. (2015). Experimental study on seismic response of geogrid reinforced rigid retaining walls with saturated backfill sand. Geotext. Geomembr., 43(1), 35-45.
    81. Wan, Y., Gao, Y., and Zhang, F. (2016). A simplified approach to determine the unique direction of sliding in 3D slopes. Eng Geol. 211, 179-183.
    82. Wang, L. (2018). Prediction Method of Reinforcement Load and Design Method of
    Reinforcement Stiffness for Vertical Reinforced Soil Retaining Walls. PhD thesis.
    Huazhong Univ. Sci. Technol, Wuhan, China.
    83. Wu, J. T., & Tung, S. C. Y. (2020). Determination of model parameters for the hardening soil model. Transportation Infrastructure Geotechnology, 7(1), 55-68.
    84. Xie, Y., Leshchinsky B. (2015). MSE walls as bridge abutments: Optimal reinforcement density. Geotext. Geomembr. 43(2), 128-138.
    85. Xu, P., Hatami, K., & Jiang, G. (2020). Study on seismic stability and performance of reinforced soil walls using shaking table tests. Geotextiles and Geomembranes, 48(1), 82-97.
    86. Yang, K. H., Hung, W. Y., & Kencana, E. Y. (2013). Acceleration-amplified responses of geosynthetic-reinforced soil structures with a wide range of input ground accelerations. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III (pp. 1178-1187).
    87. Zornberg, J. G., Sitar, N., and Mitchell, J. K. (1998a). Performance of geosynthetic reinforced slopes at failure. Journal of Geotechnical and Geoenvironmental Engineering, 124(8), 670-683.
    88. Zornberg, J. G., Sitar, N., and Mitchell, J. K. (1998b). Limit equilibrium as basis for design of geosynthetic reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 124(8), 684-698.
    89. Zhang, Y., Chen, G., Zheng, L., Li, Y., Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability. Can. Geotech. J. 50(3), 233-249.
    90. Zhang, F., Gao, Y., Leshchinsky, D., Yang, S., Dai, G. (2018a). 3D effects of turning corner on stability of geosynthetic-reinforced soil structures. Geotext. Geomembr. 46(4), 367-376.
    91. Zhang, F., Leshchinsky, D., Gao, Y., Yang, S. (2018b). Three-Dimensional Slope Stability Analysis of Convex Turning Corners. J. Geotech. Geoenviron. 144(6), 06018003.
    92. Zhang, F., Leshchinsky, D., Gao, Y., Yang, S. (2019). Corner reinforced slopes: Required strength and length of reinforcement based on internal stability. Geotext. Geomembr.

    下載圖示 校內:2025-02-08公開
    校外:2025-02-08公開
    QR CODE