簡易檢索 / 詳目顯示

研究生: 蕭詠耀
Xiao, Yong-Yao
論文名稱: 二次光學於固態照明之應用
The Secondary Optics for Application in Solid-State Lightings
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 自由曲面反射罩二次光學設計白光LED微透鏡陣列
外文關鍵詞: Freeform reflector, Secondary optics design, White LED, Mircolens array
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了落實現今節能與環保的兩大問題,固態照明將取代傳統光源可達到節能的目的,使得LED照明燈具的開發被視為極具潛力的核心問題。但LED光指向性高,必須額外加上二次光學所設計的光學組件將光適當的分散,以最少數目LED元件達到目標所需的亮度,並依據燈具規範來設計。在燈具設計上,藉由二次曲面反射罩將光重新分配至照明區域呈現非對稱出光,然而在二次曲面反射罩的設計方法上,大多採取以複雜的數學模型來進行設計,此方式反而增加了設計上的困難與時間上的浪費。為了改善此缺點,本論文提供另一個設計曲面反射罩的方法,只需要簡單的數學方程式與旋轉光線搭配曲線交點上的垂直或水平切線就可以完成設計。為了驗證所提供的設計方法,設計了自由曲面反射罩並且利用光學模擬軟體TracePro與應用至檯燈燈具的實際量測結果相互比較來進行驗證。
    在白光LED自由曲面反射罩設計部分利用TracePro模擬後,其燈具光學轉換效率為73.09%,而橫向均勻度為87.21%,並針對實作室內照明檯燈上進行實驗量測,出光結果顯示以非對稱的配光分配呈現,其模擬與實驗量測結果的出光角度是一致的。且在較大的照明區域範圍中,整體均勻度為0.48高於市售檯燈的0.25~0.29。對於國內環境照度所需規範(500lux~1000lux),此設計的檯燈已達到室內燈具的照明規範。
    本論文另一方面,也利用等向性濕蝕刻的簡單的製程方法,製作出半球狀凹槽的微透鏡陣列。依據黃光微影和濕蝕刻參數調整即可控制微透鏡的曲率半徑,最後聚焦長度從理論上的計算為145.02μm與實驗上量測的聚焦長度為 μm結果幾乎為一致的,並有著良好的聚光特性。

    We have proposed and later successfully implemented a rotational angle approach to design the freeform reflector for white LED lamp secondary optics applications. In the simulation, the lamp illumination uniformity is 87.21%, illumination efficiency is 73.09%, and illumination is 500 lux~1000lux, which are compliant with the initial specifications. A novel asymmetric illumination lamp is designed to render a portion of the light signal being transferred to the target area by freeform reflector. The measurement result is in good agreement with the simulation result. On the other hand, the lens curvature of MLA can be reliably tailored by controlling the process parameters associated with the photolithography and wet etching time. The focal length of mircolens array is experimentally found in the range of 150±10μm, as compared to the theoretical calculated value of 145.2μm. A reasonable agreement between the theoretical calculation and experimental results is achieved.

    中文摘要 I 英文摘要 III 致謝 XI 目錄 XIII 圖目錄 XVII 第一章 序論 .............1 1.1 研究動機與目的 ......1 1.2 論文架構 ......6 1.3 參考文獻 ......7 第二章 幾何光學的基本定律 ......9 2.1 導論 ......9 2.2 光傳播的反射與折射現象 ......10 2.2.1費爾馬定理 (Fermat’s Theorem) ......10 2.2.2反射定律(Law of reflection)...... 13 2.2.3折射定律(Law of refraction or Snell’s law) ......14 2.2.4全反射(Total reflection) ......15 2.3 光線追跡法(RAY TRACING) ......16 2.4 參考文獻......20 第三章 二次曲面反射罩應用於燈具照明...... 21 3.1 導論 ......21 3.2 反射設計方法 ......22 3.2.1非透光性材料...... 22 3.2.2透光性材料 ......25 3.3 曲面反射罩應用於白光LED燈具上之設計目的 ......32 3.3.1 曲面反射罩於白光LED燈具設計流程及方法......34 3.4 曲面反射罩於白光LED燈具設計結果與模擬分析 ......40 3.4.1 曲面反射罩設計 ......40 3.5 應用於LED檯燈燈具量測結果與討論 ......49 3.5.1 配光曲線量測 ......52 3.5.2 照度均勻度量測 ......56 3.6 參考文獻 ......59 第四章 微透鏡陣列設計製作與量測結果分析 ......61 4.1 導論 ......61 4.2 微透鏡陣列設計原理 ......63 4.3 微透鏡陣列製作流程 ......66 4.3.1基板清洗 ......69 4.3.2 濕蝕刻石英基板 ......70 4.3.3 塗佈UV膠 ......77 4.3.4微透鏡陣列量測 ......78 4.4 微透鏡陣列應用與量測結果 ......80 4.5 參考文獻 ......86 第五章 結論與未來進展 ......88 5.1 結論 ......88 5.2 未來進展 ......89

    第一章
    [1] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Phys, vol. 44, no. 21, pp. L 649–L 651, May 2005.
    [2] 鐘承兆,“光源反射罩之結構改良”,中華民國專利 TW M372438U1, Jan, 1, 2010.
    [3] 楊順惟,“發光二極體照明裝置及其不對稱式燈罩” 中華民國專利TW M404334U1, May, 21, 2011.
    [4] Florian R. Fournier, William J. Cassarly, and Jannick P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express, Vol. 18, No. 5, pp.5295-5340, Mar. 2010.
    [5] Jinbo Jiang, Sandy To, W. B. Lee, and Benny Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik, Vol.121, pp. 1761-1765, Oct. 2010.
    [6] L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt., Vol. 48, No. 29, pp.5520-5527, Oct. 2009.
    [7] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
    [8] Y. Ding, X. Liu, Z. Zheng, and P. Gu, “Freeform LED lens for uniform illumination,” Opt. Express, Vol. 16, No. 17, pp.12958-12966, Aug. 2008.
    [9] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt., Vol. 48, No. 35, pp.6627-6634, Dec. 2009.
    [10] A. Domhardt, U. Rohlfing, S. Weingaertner, K. Klinger, D. Koob, K. Manz, and U. Lemmer, “New design tools for LED headlamps,” Proc. SPIE, Vol. 7003, pp. 70032C-70032C-10, May 2008.
    [11] John Bortz, Narkis Shatz, and Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source,” Proc. SPIE, Vol. 5529, pp.8-16, Sept. 2004.
    [12] J. J. Chen, and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” SPIE Opt .Eng., Vol. 49, pp.093001-1-093001-7, Sept. 2010.
    [13] N. Watanabe, H. Hamada, F. Funada, Y. Koriyama, OPTICAL DEVICE HAVING A MICROLENS AND A PROCESS FOR MAKING MICROLENSES, US patent 5225935, 1994.
    [14] M. Oikawa, K. Iga. And T. Sanada, “Distributed-index planar microlens prepared from ion-exchange technique,” Jpn. J. Appl. Phys. Vol. 20,pp.L296-L296,1981.
    [15] K. Umeki, S. Sato, GRADATION MASK MASK METHOD OF PRODUCING THE SAVE AND METHOD OF FORMING SPECIAL SURFACE PROFILE ON METERIAL USING GRADATION MASK, US Patent 5830605, 1998.

    第二章
    [1] S. O. Kasap, “Optoelectronics and photonics: Principles and Practices,” New Jersey: Prentice Hall, pp.11-16, 2001.
    [2] Eugene Hecht, “Optics (4th Edition),” Addison Wesley, 2001.

    第三章
    [1] A. Rabi, and J. M. Gordon, “Reflector design for illumination with extended sources: the basic soulution,” Appl. Opt, Vol. 33, lssue 25, pp.6012-6021,1994.
    [2] X. Hao, Z. Zheng, X. Liu, and P. Gu, “Freeform surface lens design uniform illumination,” J. Opt. A: Pure Appl. Opt., Vol. 10, No. 7, pp.075005-1-075005-6, Jul. 2008.
    [3] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
    [4] John Bortz, Narkis Shatz and, Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source,” Proc. of SPIE, Vol.5529, pp.8-16, Sept. 2004.
    [5] Jae Young Joo, and Sun Kyu Lee, “Miniaturized TIR Fresnel Lens for Miniature Optical LED Applications,” International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 2, pp.137-140, Apr. 2009.
    [6] Y. Y. Chen, I J. Chen, A. J. W. Whang, and L. T. Chen, “Analysis of Die-Imaging and Yellow Hue Phenomena in LED TIR Lens,” Proc. of SPIE, Vol. 7059, pp.70590O-70590O-11, Aug. 2008.
    [7] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Opt. Express, Vol. 16, No.17, pp.12958-12966, Dec. 2008.
    [8] K. Kreske, “Optical Design of a Solar Flux Homogenizer for Concentrator Photovoltaics,” Appl. Opt., Vol. 41, pp.2053-2058, Apr. 2002.
    [9] 黃彥昌,孫火清, “高功率LED配光之量測” ,Proceedings of the Fourth Intelligent Living Technology Conference, pp.1339-1342, 2009.

    第四章
    [1] J. T. Wu and S. Y. Yang, “A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate,” J. Micromech. Micromech, Vol. 20, No. 8 085038, Jun. 2010.
    [2] J. N. Kuo, C. C. Hsieh, S. Y. Yang, and G. B. Lee, “An SU-8 microlens array fabricated by soft replica molding for cell counting applications,” J. Micromech. Micromech, Vol. 17,No. 4, pp. 693-699, Dec. 2006.
    [3] H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir, Vol. 10,No. 8, pp. 2790-2793,1994.
    [4] M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir, Vol. 18,No. 24, pp.9312-9318, 2002.
    [5] Q. Peng, Y. Guo, S. Liu, and Z. Cui, “Real-time gray-scale photolithography for fabrication of continuous microstructure,” Opt. letters, Vol. 27, No.19, pp. 1720-1722, 2002.
    [6] S. K. Lee, K. C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng, Vol. 12, No. 3, pp. 334-340, 2002.
    [7] Y. Huqng, R. Liu, J. Lai, “Design and fabrication of a negative microlens array,” Opt. Laser Technology, Vol. 40, pp. 1047-1050, Feb. 2008.

    [8] Bian Hao, Hewei Liu, Feng Chen, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. EXPRESS, Vol. 20, No. 12, June. 2012.

    無法下載圖示 校內:2017-11-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE