| 研究生: |
範秋賢 Pham, Thi-Thu-Hien |
|---|---|
| 論文名稱: |
史托克偏光法用於非等向材料和混濁介質之等效光學參數量測 Characterization on effective optical parameters of anisotropic materials and turbid media using Stokes polarimeter |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 異向性光學材料 、混濁媒介 、繆勒矩陣 、史托克參數法 、偏光儀 、生物組織 |
| 外文關鍵詞: | Anisotropic optical materials, Turbid media, Mueller matrix, Stokes vector, Metrology, Polarimetry, Bio-tissue |
| 相關次數: | 點閱:143 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種建立在繆勒矩陣與史托克參數的分析技術,成功解出混濁介質的線性雙折射、線性雙向衰減、旋性雙折射、旋性雙向衰減、線性去偏極以及旋性去偏極等性質的九個參數。相較於以往的分析模型,藉由完全分離的方式將九個參數完全解出,值得注意的是在近年來的相關研究當中並沒有足以顯示生物材料特徵的九個參數。本研究提出的方法可藉由解出不同線性/旋性雙折射以及線性/旋性雙向衰減的光學材料的等效參數,並假設輸出的史托克參數誤差範圍為±0.005來分析其誤差與解析解。
結果確認提出的方法對於所有的光學參數能產生全域量測。提出的量測方法利用測試不同的樣本證明其正確性,實驗結果也說明含有D葡萄糖及去離子水和僅有D葡萄糖的2種聚苯乙烯微球體的CB性質受樣本與偵測器之間距離的影響。分離分析模型的方式產生許多重要的優點,包括改善精確度以及能解出僅有線性雙折射、線性雙向衰減、旋性雙折射、旋性雙向衰減或去偏極性質光學材料的參數而不需要藉由補償技術或預處理。此外,在分離的過程產生許多解的問題在目前團隊之前提出的模型已經被避免,就作者認為,完全分離混和介質的9個參數的方法可能是最廣泛的演算法。
用光纖探針量測光學非等向材料的性質時,需要用偏振控制器去補償光纖本身的雙折射與雙衰減性質,而偏振控制器的光學元件設定是在冗長的實驗過程中反覆試驗而決定的,在本研究中,提出一個計算控制器設定的方法使其達到自由空間,由這個分析方法可以獲得光纖的等效參數,再利用基因演算法獲得偏振控制器的最佳化設定,文中說明提出的方法能夠用普通的偏振控制器達到自由空間的狀態,藉由量測四分之一波片的線性雙折射性質與起偏器的線性雙衰減性質來說明此方法的實際應用。
A decoupled analytical technique based on the Mueller matrix method and the Stokes parameters is proposed for extracting nine effective parameters in linear birefringence (LB), linear dichroism (LD), circular birefrinegence (CB), and circular dichroism (CD), linear depolarization (L-Dep), and circular depolarization (C-Dep) properties of turbid media. In contrast to existing analytical models, the nine effective parameters are extracted in a totally decoupled manner. It is noted that the recent related studies did not show enough nine parameters of characteristics of bio-sample. The error and resolution analysis of the proposed approach is demonstrated by extracting the effective parameters of optical samples with varying degrees of linear / circular birefringence, linear / circular dichroism, and linear / circular depolarization given an assumption of errors ranging from ±0.005 in the values of the output Stokes parameters.
The results confirm the ability of the proposed method to yield full-range measurements of all the effective optical parameters. The validity of the proposed measurement method in testing different samples is proved. Also, the experimental results have showed that the CB property of two types polystyrene microspheres with containing D-glucose and de-ionized water with containing D-glucose is affected by the distance between the samples and detector. The decoupled nature of the analytical model yields several important advantages, including an improved accuracy and the ability to extract the parameters of optical samples with only linear birefringence, circular birefringence, linear dichroism, circular dichroism or depolarization property without using compensation technique or pretreatment. Moreover, by decoupling the extraction process, the “multiple solutions” problem inherent in previous models presented by the current group is avoided. As authors’ knowledge, this methodology could be the most comprehensive algorithm in extracting all nine effective parameters in decoupling in turbid media.
When using an optical fiber probe to measure the properties of anisotropic optical materials, some form of polarization controller is required to compensate for the inherent birefringence and diattenuation properties of the fiber. The experimental settings of the optical components within the polarization controller are generally determined on a trial-and-error basis; resulting in a lengthy experimentation process. Accordingly, in the present study, a method is proposed for calculating in advance the precise controller settings required to guarantee the formation of a free-space condition. In the proposed approach, the effective optical parameters of the optical fiber are determined using this analytical method, and the optimal settings of the polarization controller are then determined using a genetic algorithm. It is shown that the proposed approach enables a free-space condition to be achieved for the common polarization controller. The practical applicability of the proposed approach is demonstrated by remotely and absolutely measuring the linear birefringence and linear diattenuation properties of a quarter-wave plate and a polarizer, respectively.
[1] V. V. Tuchin, Selected papers on tissue optics: applications in medical diagnostics and therapy Vol. MS102. Bellingham, WA: SPIE Optical Engineering Press, 1994.
[2] V. V. Tuchin, Handbook of Optical Biomedical Diagnostics Vol. PM107. Bellingham, WA: SPIE Optical Engineering Press, 2002.
[3] X.-R. Huang and R. W. Knighton, "Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter," J. Biomed. Opt., Vol. 7(2), pp. 199-204, 2002.
[4] X.-R. Huang and R. W. Knighton, "Theoretical Model of the Polarization Properties of the Retinal Nerve Fiber Layer in Reflection," Appl. Opt., Vol. 42(28), pp. 5726-5736, 2003.
[5] X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Investigative Ophthalmology & Visual Science, Vol. 45(9), pp. 3073-3080, 2004.
[6] X.-R. Huang and R. W. Knighton, "Microtubules Contribute to the Birefringence of the Retinal Nerve Fiber Layer," Investigative Ophthalmology & Visual Science, Vol. 46(12), pp. 4588-4593, 2005.
[7] M. F. G. Wood, X. Guo, and I. A. Vitkin, "Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology," J. Biomed. Opt., Vol. 12(1), pp. 014029-10, 2007.
[8] M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, and I. A. Vitkin, "Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues," J. Biomed. Opt., Vol. 15(4), pp. 047009-9, 2010.
[9] S. M. Pappada, B. D. Cameron, and P. M. Rosman, "Development of a neural network for prediction of glucose concentration in type 1 diabetes patients," Journal of Diabetes Science and Technology, Vol. 2, pp. 792-801, 2008.
[10] G. L. Liu, Y. Li, and B. D. Cameron, "Polarization-based optical imaging and processing techniques with application to the cancer diagnostics," Proc. SPIE, San Jose, CA, USA, pp. 208-220, 2002.
[11] J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, "Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye," J. Biomed. Opt., Vol. 7(3), pp. 321-328, 2002.
[12] M. Todorovi, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biologicalsamples in the presence of diattenuation by use of Muelleroptical coherence tomography," Opt. Lett., Vol. 29(20), pp. 2402-2404, 2004.
[13] X. R. Huang and R. W. Knighton, "Diattenuation and Polarization Preservation of Retinal Nerve Fiber Layer Reflectance," Appl. Opt., Vol. 42(28), pp. 5737-5743, 2003.
[14] N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism: principles and applications: Wiley-VCH, 2000.
[15] S. M. Kelly, T. J. Jess, and N. C. Price, "How to study proteins by circular dichroism," Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, Vol. 1751(2), pp. 119-139, 2005.
[16] N. A. Swords and B. A. Wallace, "Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra," Biochem. J., Vol. 289(1), pp. 215-219, 1993.
[17] F. Zsila, P. Molnár, J. Deli, and S. F. Lockwood, "Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human [alpha]1-acid glycoprotein," Bioorganic Chemistry, Vol. 33(4), pp. 298-309, 2005.
[18] N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence," J. Biomed. Opt., Vol. 13(4), pp. 044036-14, 2008.
[19] M. F. G. Wood, N. Ghosh, X. Guo, and I. A. Vitkin, "Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity," Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, San Jose, CA, USA, pp. 68700F-10, 2008.
[20] N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, "Mueller matrix decomposition for polarized light assessment of biological tissues," Journal of Biophotonics, Vol. 2(3), pp. 145-156, 2009.
[21] N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry," J. Appl. Phys., Vol. 105(10), pp. 102023-8, 2009.
[22] M. F. G. Wood, N. Ghosh, M. A. Wallenburg, E. H. Moriyama, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, and I. A. Vitkin, "Turbid polarimetry for tissue characterization," Novel Optical Instrumentation for Biomedical Applications IV, Munich, Germany, pp. 737106-10, 2009.
[23] M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, "Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo," J. Biomed. Opt., Vol. 14(1), pp. 014029-5, 2009.
[24] M. A. Wallenburg, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, "Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy," Opt. Lett., Vol. 35(15), pp. 2570-2572, 2010.
[25] N. Ghosh, J. Soni, M. Wood, M. Wallenberg, and I. Vitkin, "Mueller matrix polarimetry for the characterization of complex random medium like biological tissues," Pramana, Vol. 75(6), pp. 1071-1086, 2010.
[26] M. F. G. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, "Effects of formalin fixation on tissue optical polarization properties," Physics in Medicine and Biology, Vol. 56(8), p. N115, 2011.
[27] M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, "Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?," Biomed. Opt. Exp., Vol. 2(12), pp. 3248-3258, 2011.
[28] S. L. Jacques, M. R. Ostermeyer, L. V. Wang, and D. V. Stephens, "Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, San Jose, CA, USA, pp. 199-210, 1996.
[29] A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt., Vol. 36(1), pp. 125-135, 1997.
[30] M. J. Rakovic, G. W. Kattawar, M. Mehruubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, "Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment," Appl. Opt., Vol. 38(15), pp. 3399-3408, 1999.
[31] X. Wang, G. Yao, and L. V. Wang, "Monte Carlo Model and Single-Scattering Approximation of the Propagation of Polarized Light in Turbid Media Containing Glucose," Appl. Opt., Vol. 41(4), pp. 792-801, 2002.
[32] X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J. Biomed. Opt., Vol. 7(3), pp. 279-290, 2002.
[33] R. R. Anderson, "Polarized Light Examination and Photography of the Skin," Arch Dermatol, Vol. 127(7), pp. 1000-1005, 1991.
[34] S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt., Vol. 36(1), pp. 150-155, 1997.
[35] A. Hielscher, A. Eick, J. Mourant, D. Shen, J. Freyer, and I. Bigio, "Diffuse backscattering Mueller matricesof highly scattering media," Opt. Express, Vol. 1(13), pp. 441-453, 1997.
[36] B. D. Cameron, M. J. Rakovic, M. Mehrübeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett., Vol. 23(7), pp. 485-487, 1998.
[37] M. J. Rakovi and G. W. Kattawar, "Theoretical Analysis of Polarization Patterns from Incoherent Backscattering of Light," Appl. Opt., Vol. 37(15), pp. 3333-3338, 1998.
[38] G. Yao and L. Wang, "Propagation of polarized light in turbid media: simulated animation sequences," Opt. Express, Vol. 7(5), pp. 198-203, 2000.
[39] A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Optical mapping of non-melanoma skin cancer," Prog. in Biom. Opt. and Imag., Vol. 5(15), pp. 60-63, 2004.
[40] O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, "Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes," Physics in Medicine and Biology, Vol. 50(20), pp. 4811-4822, 2005.
[41] N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "A Monte Carlo study of Mueller matrix decomposition in complex tissue-like turbid media," Biomedical Applications of Light Scattering III, San Jose, CA, USA, pp. 71870K-10, 2009.
[42] N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues," Optics Communications, Vol. 283(6), pp. 1200-1208, 2010.
[43] N. Ghosh and I. A. Vitkin, "Tissue polarimetry: concepts, challenges, applications, and outlook," J. Biomed. Opt., Vol. 16(11), p. 110801, 2011.
[44] S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A, Vol. 13(5), pp. 1106-1113, 1996.
[45] G. F. Smith, Constitutive equations for anisotropic and isotropic materials Vol. Volume 3, North-Holland (Amsterdam and New York), 1994.
[46] M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. Derege, T. Swager, and E. L. Thomas, "Measuring Local Optical Properties: Near-Field Polarimetry of Photonic Block Copolymer Morphology," Phys.l Rev. Lett., Vol. 90(1), p. 016107, 2003.
[47] L. S. Goldner, M. J. Fasolka, S. Nougier, H.-P. Nguyen, G. W. Bryant, J. Hwang, K. D. Weston, K. L. Beers, A. Urbas, and E. L. Thomas, "Fourier Analysis Near-Field Polarimetry for Measurement of Local Optical Properties of Thin Films," Appl. Opt., Vol. 42(19), pp. 3864-3881, 2003.
[48] S. G. Lori, J. F. Michael, and N. G. Scott, "Measurement of the Local Diattenuation and Retardance of Thin Polymer Films Using Near-Field Polarimetry," Applications of Scanned Probe Microscopy to Polymers. Vol. 897, Ed: American Chemical Society, pp. 65-84, 2005.
[49] A. L. Campillo and J. W. P. Hsu, "Near-field scanning optical microscope studies of the anisotropic stress variations in patterned SiN membranes," J. Appl. Phys., Vol. 91(2), pp. 646-651, 2002.
[50] D. B. Chenault and R. A. Chipman, "Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter," Appl. Opt., Vol. 32(19), pp. 3513-3519, 1993.
[51] D. B. Chenault and R. A. Chipman, "Infrared birefringence spectra for cadmium sulfide and cadmium selenide," Appl. Opt., Vol. 32(22), pp. 4223-4227, 1993.
[52] D. B. Chenault, R. A. Chipman, and S.-Y. Lu, "Electro-optic coefficient spectrum of cadmium telluride," Appl. Opt., Vol. 33(31), pp. 7382-7389, 1994.
[53] E. A. Sornsin and R. A. Chipman, "Visible Mueller matrix spectropolarimetry," Proc. SPIE, San Diego, CA, USA, pp. 156-160, 1997.
[54] J. M. Bueno and P. Artal, "Average double-pass ocular diattenuation using foveal fixation," Journal of Modern Optics, Vol. 55(4-5), pp. 849-859, 2008.
[55] J. M. Bueno and G. M. Pérez, "Combined effect of wavelength and polarization in double-pass retinal images in the human eye," Vision Research, Vol. 50(23), pp. 2439-2444, 2010.
[56] A. Yogev, L. Margulies, and Y. Mazur, "Studies in linear dichroism. III. Application to molecular associations," J. Am. Chem. Soc., Vol. 92(20), pp. 6059-6061, 1970.
[57] A. Yogev, J. Sagiv, and Y. Mazur, "Linear dichroism. VI. Polarization of electronic transitions in isolated double bonds," J. the American Chemical Society, Vol. 94(14), pp. 5122-5124, 1972.
[58] T. C. Troxell and H. A. Scheraga, "Electric Dichroism and Polymer Conformation. I. Theory of Optical Properties of Anisotropic Media, and Method of Measurement," Macromolecules, Vol. 4(5), pp. 519-527, 1971.
[59] A. Wada, "Chain regularity and flow dichroism of deoxyribonucleic acids in solution," Biopolymers, Vol. 2(4), pp. 361-380, 1964.
[60] J. Brahms, J. Pilet, H. Damany, and V. Chandrasekharan, "Application of a new modulation method for linear dichroism studies of oriented biopolymers in the vacuum ultraviolet," Proc. Natl. Acad. Sci., USA., pp. 1130-1137, 1968.
[61] T. C. Troxell and H. A. Scheraga, "Use of electric dichroism to study polymer conformation," Biochemical and Biophysical Research Communications, Vol. 35(6), pp. 913-919, 1969.
[62] H. Yao, T. Isohashi, and K. Kimura, "Detection of spectral inhomogeneities of mesoscopic thiacyanine J aggregates in solution by the apparent CD spectral measurement," Chem. Phys. Lett., Vol. 419(1-3), pp. 21-27, 2006.
[63] C. Provenzano, P. Pagliusi, A. Mazzulla, and G. Cipparrone, "Method for artifact-free circular dichroism measurements based on polarization grating," Opt. Lett., Vol. 35(11), pp. 1822-1824, 2010.
[64] R. Kuroda, T. Harada, and Y. Shindo, "A solid-state dedicated circular dichroism spectrophotometer: Development and application," Review of Scientific Instruments, Vol. 72(10), pp. 3802-3810, 2001.
[65] T. Harada, H. Hayakawa, and R. Kuroda, "Vertical-type chiroptical spectrophotometer (I): Instrumentation and application to diffuse reflectance circular dichroism measurement," Review of Scientific Instruments, Vol. 79(7), pp. 073103-6, 2008.
[66] J. Kobayashi, T. Asahi, M. Sakurai, M. Takahashi, K. Okubo, and Y. Enomoto, "Optical properties of superconducting Bi2Sr2CaCu2O8," Phys. Rev. B, Vol. 53(17), p. 11784, 1996.
[67] J. Kobayashi and T. Asahi, "Development of HAUP and its applications to various kinds of solids," Proc. SPIE, San Diego, CA, USA, pp. 25-39, 2000.
[68] W. Kaminsky, K. Claborn, and B. Kahr, "Polarimetric imaging of crystals," Chemical Society Reviews, Vol. 33(8), pp. 514-525, 2004.
[69] W. Kaminsky, M. A. Geday, J. Herreros-Cedrés, and B. Kahr, "Optical Rotatory and Circular Dichroic Scattering," J. Phys. Chem. A, Vol. 107(16), pp. 2800-2807, 2003.
[70] K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, "Circular Dichroism Imaging Microscopy: Application to Enantiomorphous Twinning in Biaxial Crystals of 1,8-Dihydroxyanthraquinone," J. Am. Chem. Soc., Vol. 125(48), pp. 14825-14831, 2003.
[71] K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, "Circular Extinction Imaging: Determination of the Absolute Orientation of Embedded Chromophores in Enantiomorphously Twinned LiKSO4 Crystals," Crystal Growth & Design, Vol. 5(6), pp. 2117-2123, 2005.
[72] W. Kaminsky, E. Gunn, R. Sours, and B. Kahr, "Simultaneous false-colour imaging of birefringence, extinction and transmittance at camera speed," J. Microscopy, Vol. 228(2), pp. 153-164, 2007.
[73] P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, "In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy," J. Biomed. Opt., Vol. 10(3), pp. 034018-15, 2005.
[74] T. Moffitt, Y.-C. Chen, and S. A. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt., Vol. 11(4), pp. 041103-10, 2006.
[75] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt., Vol. 32(4), pp. 399-410, 1993.
[76] A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt., Vol. 36(1), pp. 402-415, 1997.
[77] S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt., Vol. 36(1), pp. 386-396, 1997.
[78] G. Pal, S. Basu, K. Mitra, and T. Vo-Dinh, "Time-resolved optical tomography using short-pulse laser for tumor detection," Appl. Opt., Vol. 45(24), pp. 6270-6282, 2006.
[79] D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, "Multi-channel time-resolved system for functional near infrared spectroscopy," Opt. Express, Vol. 14(12), pp. 5418-5432, 2006.
[80] S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, "Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry," Optical Engineering, Vol. 34(1), pp. 32-42, 1995.
[81] G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, "Determination of the Optical Properties of Two-Layer Turbid Media by Use of a Frequency-Domain Hybrid Monte Carlo Diffusion Model," Appl. Opt., Vol. 40(22), pp. 3810-3821, 2001.
[82] N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt., Vol. 9(3), pp. 534-540, 2004.
[83] S. J. Yeh, O. S. Khalil, C. F. Hanna, and S. Kantor, "Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin," J. Biomed. Opt., Vol. 8(3), pp. 534-544, 2003.
[84] A. Dimofte, J. C. Finlay, and T. C. Zhu, "A method for determination of the absorption and scattering properties interstitially in turbid media," Physics in Medicine and Biology, Vol. 50(10), pp. 2291-311, 2005.
[85] R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, "Continuous, Noninvasive Monitoring of Total Hemoglobin Concentration by an Optoacoustic Technique," Appl. Opt., Vol. 43(17), pp. 3401-3407, 2004.
[86] C. L. Darling, G. D. Huynh, and D. Fried, "Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm," J. Biomed. Opt., Vol. 11(3), pp. 034023-11, 2006.
[87] B. D. Cameron and G. L. Cote, "Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach," Biomedical Engineering, IEEE Transactions on, Vol. 44(12), pp. 1221-1227, 1997.
[88] J. S. Baba, J. R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, "Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt., Vol. 7(3), pp. 341-349, 2002.
[89] B. D. Cameron, Y. Li, and A. Nezhuvingal, "Determination of optical scattering properties in turbid media using Mueller matrix imaging," J. Biomed. Opt., Vol. 11(5), pp. 054031-8, 2006.
[90] G. L. Liu, Y. Li, and B. D. Cameron, "Polarization-based optical imaging and processing techniques with application to the cancer diagnostics," Proc. SPIE, San Jose, CA, USA, pp. 208-220, 2002.
[91] Q. Lu, X. Gan, M. Gu, and Q. Luo, "Monte Carlo Modeling of Optical Coherence Tomography Imaging through Turbid Media," Appl. Opt., Vol. 43(8), pp. 1628-1637, 2004.
[92] Y. Deng, S. Zeng, Q. Lu, D. Zhu, and Q. Luo, "Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption," Opt. Express, Vol. 15(15), pp. 9672-9680, 2007.
[93] Y. Deng, Q. Lu, Q. Luo, and S. Zeng, "Third-order scattering model for the diffuse backscattering intensity patterns of polarized light from a turbid medium," Appl. Phys. Lett., Vol. 90(15), p. 153902, 2007.
[94] D. Zhu, W. Lu, S. Zeng, and Q. Luo, "Effect of light losses of sample between two integrating spheres on optical properties estimation," J. Biomed. Opt., Vol. 12(6), pp. 064004-8, 2007.
[95] Y. Deng, S. Zeng, Q. Luo, Z. Zhang, and L. Fu, "Numerical study of the effects of scatterer sizes and distributions on multiple backscattered intensity patterns of polarized light," Opt. Lett., Vol. 33(1), pp. 77-79, 2008.
[96] L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47(2), pp. 131-146, 1995.
[97] S. Firdous, K. Hassan, and M. Ikram, "Formulation of a Mueller matrix for modeling of depolarization and scattering of nitrobenzene in a Kerr cell," Appl. Opt., Vol. 44(7), pp. 1171-1177, 2005.
[98] R. M. A. Azzam, "Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus," J. Opt. Soc. Am., Vol. 68(12), pp. 1756-1767, 1978.
[99] R. Ossikovski, "Differential matrix formalism for depolarizing anisotropic media," Opt. Lett., Vol. 36(12), pp. 2330-2332, 2011.
[100] N. Ortega-Quijano and J. L. Arce-Diego, "Depolarizing differential Mueller matrices," Opt. Lett., Vol. 36(13), pp. 2429-2431, 2011.
[101] N. Ortega-Quijano and J. L. Arce-Diego, "Mueller matrix differential decomposition," Opt. Lett., Vol. 36(10), pp. 1942-1944, 2011.
[102] N. Ortega-Quijano and J. L. Arce-Diego, "Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering," Opt. Express, Vol. 19(15), pp. 14348-14353, 2011.
[103] P.-C. Chen, Y.-L. Lo, T.-C. Yu, J.-F. Lin, and T.-T. Yang, "Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters," Opt. Express, Vol. 17(18), pp. 15860-15884, 2009.
[104] Y.-L. Lo, T.-T.-H. Pham, and P.-C. Chen, "Characterization on five effective parameters of anisotropic optical material using Stokes parameters- Demonstration by a fiber-type polarimeter," Opt. Express, Vol. 18(9), pp. 9133-9150, 2010.
[105] T.-T.-H. Pham and Y.-L. Lo, "Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method," J. Biomed. Opt., Vol. 17(2), pp. 025006-17, 2012.
[106] J.-F. Lin, "Concurrent measurement of linear and circular birefringence using rotating-wave-plate Stokes polarimeter," Appl. Opt., Vol. 47(25), pp. 4529-4539, 2008.
[107] A. Yariv and P. Yeh, Optical waves in crystals: Propagation and Control of Laser Radiation. USA: John Wiley & Sons, 1984.
[108] M. Born and E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge, UK: Cambridge University Press, 1999.
[109] E. Hecht, Optics, Fourth ed. USA: Addison Wesley, 2002.
[110] W. S. Wieglhofer and A. Lakhtakia, Introduction to complex mediums for optics and electromagnectics Vol. PM123. Bellingham, WA, USA: SPIE Press, 2003.
[111] F. Boulvert, B. Boulbry, G. L. Brun, B. L. Jeune, S. Rivet, and J. Cariou, "Analysis of the depolarizing properties of irradiated pig skin," Journal of Optics A: Pure and Applied Optics, Vol. 7(1), p. 21, 2005.
[112] S. N. Savenkov, "Mueller-matrix description of depolarization in elastic light scattering," Polarization Analysis and Measurement IV, San Diego, CA, USA, pp. 180-187, 2002.
[113] R. Ossikovski, M. Anastasiadou, S. B. Hatit, E. Garcia-Caurel, and A. D. Martino, "Depolarizing Mueller matrices: how to decompose them?," physica status solidi (a), Vol. 205(4), pp. 720-727, 2008.
[114] R. Ossikovski, "Analysis of depolarizing Mueller matrices through a symmetric decomposition," J. Opt. Soc. Am. A, Vol. 26(5), pp. 1109-1118, 2009.
[115] J. Morio and F. Goudail, "Influence of the order of diattenuator, retarder, and polarizer inpolar decomposition of Mueller matrices," Opt. Lett., Vol. 29(19), pp. 2234-2236, 2004.
[116] F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, "Decomposition algorithm of an experimental Mueller matrix," Optics Communications, Vol. 282(5), pp. 692-704, 2009.
[117] R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, "Depolarizing Mueller matrices: how to decompose them?," physica status solidi (a), Vol. 205(4), pp. 720-727, 2008.
[118] R. Ossikovski, "Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition," J. Opt. Soc. Am. A, Vol. 25(2), pp. 473-482, 2008.
[119] I. C. Khoo and F. Simoni, Physics of Liquid Crystalline Materials Vol. Chapter 13: Gorden and Breach Science Publishers, 1991.
[120] S. Savenkov, "Invariance of anisotropy properties presentation in scope of polarization equivalence theorems," Proc. SPIE, Vol. 6536(1), p. 65360G, 2007.
[121] B. J. DeBoo, J. M. Sasian, and R. A. Chipman, "Depolarization of diffusely reflecting man-made objects," Appl. Opt., Vol. 44(26), pp. 5434-5445, 2005.
[122] R. A. Chipman, "Depolarization index and the average degree of polarization," Appl. Opt., Vol. 44(13), pp. 2490-2495, 2005.
[123] J. J. Gil and E. Bernabeu, "Depolarization and Polarization Indices of an Optical System," Optica Acta: International Journal of Optics, Vol. 33(2), pp. 185-189, 1986.
[124] J. Schellman and H. P. Jensen, "Optical spectroscopy of oriented molecules," Chemical Reviews, Vol. 87(6), pp. 1359-1399, 1987.
[125] O. Arteaga and A. Canillas, "Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media," Opt. Lett., Vol. 35(4), pp. 559-561, 2010.
[126] T. T. H. Pham, Y.-L. Lo, and P.-C. Chen, "Design of Polarization-Insensitive Optical Fiber Probe Based on Effective Optical Parameters," J. Lightwave Technol., Vol. 29(8), pp. 1127-1135, 2011.
[127] Z. Michalewicz, Genetic Algorithm+ Data Structure= Evolution Programs, Third ed.: Springer-Verlag Berlin Heidelberg New York, 1994.
[128] R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light. North Holland: Elsevier, 1977.
[129] C. Brosseau, Fundamentals of polarized light: A statistical optics approach. Canada: John Wiley & Sons, Inc., 1998.
[130] Y. F. Chao and P. L. Lin, "Artifactual circular dichroism effect in a photoelastic modulator," Optics Communications, Vol. 283(23), pp. 4582-4585, 2010.
[131] R. C. Jones, "A New Calculus for the Treatment of Optical Systems. VII. Properties of the N-Matrices," J. Opt. Soc. Am., Vol. 38(8), pp. 671-683, 1948.
[132] O. Arteaga and A. Canillas, "Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices," J. Opt. Soc. Am. A, Vol. 26(4), pp. 783-793, 2009.
[133] R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A, Vol. 11(10), pp. 2727-2741, 1994.
[134] Y.-L. Lo and T.-C. Yu, "A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal," Optics Communications, Vol. 259(1), pp. 40-48, 2006.