| 研究生: |
張緹葳 Chang, Ti-Wei |
|---|---|
| 論文名稱: |
資訊架構與認知模式之關聯性研究—以智慧型手機介面為例 Relationship between Information Architecture and Cognitive Style - Taking Smartphone Interface as an Example |
| 指導教授: |
陸定邦
Luh, Ding-Bang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 資訊架構 、認知模式 、作業系統 |
| 外文關鍵詞: | Information Architecture, Cognitive Style, operating system |
| 相關次數: | 點閱:88 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對智慧型手機使用者進行探討,以「資訊架構」的觀點切入,企圖了解使用者所偏好的作業系統介面之資訊架構型態,以及探討使用者偏好之資訊架構型態與認知模式的關聯性。過去資訊架構的概念多應用在網站架構上,而行動資訊架構則針對行動網路的特性發展,包含內容、結構、導覽、視覺呈現四大元素。目前已知的資訊架構幾種型態受限於網站與應用程式的型式,因此本研究根據行動資訊架構的概念,對現今作業系統介面上,使用者常用的行動資訊架構型態以質性研究方法蒐集。本研究對十位使用者進行半結構式深度訪談,並以雙向編碼將訪談結果加以組織,一共編制出十九項資訊架構問題項,並分別有二至六種可能之資訊架構型態。為了進一步分析使用者偏好之資訊架構型態與認知模式的關聯性,以問卷調查法蒐集四百份使用者資料,以卡方百分比同質性檢定搭配事後比較探討每一項資訊架構型態與認知模式及使用經驗的關聯性。研究結果不僅發現各型態中普遍受歡迎的樣式為何,還確認不同的認知模式使用者在十九項型態中有三項,會對不同的資訊架構樣式出現不同的偏好,分別為屬於導覽元素「App管理的方式(Q4)」及結構元素「將App圖示及資料夾在桌面上排序的方式(Q9)」、「放置widget的方式(Q12)」,另有兩項則是在使用Android作業系統的情況下才與認知模式有相關,為屬於內容元素之「平均每頁的APP數量(Q15)」、「平均每天使用的widget數量(Q16)」。總結來說,在面對部分行動資訊架構型態時,不同認知模式的人會有偏好上的顯著差異。其次,分析同一作業系統的使用者,較分析多種作業系統的使用者有更多行動資訊架構與認知模式影響偏好的顯著差異。最後,在不同的行動資訊架構元素間,行動資訊架構型態與認知模式的關聯性強弱不一。本研究結果在學術上將行動資訊架構的概念從使用者的角度加以補充發展,不僅將常見的作業系統納入考量,並納入了使用者的習慣,歸納出通用的資訊架構型態。在實務上則作為越來越注重使用者研究的設計參考,讓資訊架構設計師確認哪一種元素相關的設計較需要考慮到不同的認知模式,哪種元素相關的設計則可以自由發揮。
The purpose of this study is to investigate the user preference of interface typology on smartphone operating system in the aspect of Information Architecture (IA), and analyze the relationship between Information Architecture (IA) and cognitive style, by identifying IA typology corresponding with cognitive style. Relevant studies focus on World Wide Web and applications. The concept of which introduced into mobile information devices enhance diversity and intuition and flexibility in interface typology. Thus, it is necessary to re-examine interface typology with mobile Information Architecture (MIA), which consists of four aspects, namely content, structure, navigation and representation. In some cases, users interact with OS interface in two ways: Either they adapt MIA and maintain OS interface, or try to amend interface to suit their habits. Based on MIA and with semi-structured interview, this study investigated 10 expert users for their experiences in interface design, operating inclination, and adaptability. The results of interview were coding into 16 types of Mobile Information Architecture and reformed into 19 MIA questions with Cognitive Style Index as questionnaire to run statistical anaylsis. 400 valid samples were collected from on-line platform. Through a series of Pearson’s chi-squared test, three achievements were facilitated, which are “The popular variations of each MIA types”, “The MIA types and elements that significantly related to Cognitive Style” and “The factor of using experinence that highly related to user preference of MIA types”. Three findings were concluded through examinig these achievements. First, the users with different Cognitive Styles have significant difference on preference when facing some of the MIA types. Second, there are more significant differences of preference affected by MIA and Cognitive Style, when the anaylsis is focus on the users of one specific operating system. Last, the relationship strength between Information Architecture and Cognitive Style is ranging among four elements. These achievements are suggested as references for practical uses, which increasingly lay emphasis on user study, and also help to understand what MIA elements or types should consider Cognitive Style more, and what MIA elements or types is less influenced by Cognitive Style for designers. The findings of this study are also a direct suggestion for designers to keep MIA types or remove them.
長谷川敦士. (2013). Information Architechture 100:100個網站規劃必須的知識 (林欣蔚, Trans.). 臺北市: 精誠資訊.
葉至誠, & 葉立誠. (1999). 研究方法與論文寫作 (pp. 157-158). 臺北: 商鼎文化出版社.
Allinson, C., & Hayes, J. (1996). The cognitive style index. Journal of Management studies, 33(1), 119-135.
Downey, L., & Banerjee, S. (2011). Building an information Architecture Checklist: Encouraging and Enabling IA from Infrastructure to the User Interface Architecture. information architecture, 2(2).
Dufresne, A., & Turcotte, S. (1997). Cognitive style and its implications for navigation strategies. Artificial intelligence in education: Knowledge and media in learning systems, 287-293.
Garrett, J. J. (2010). Elements of user experience, the: user-centered design for the web and beyond: Pearson Education.
Gregorc, A. (2006). The mind styles model: theory, principles, and practice. AFG, Columbia.
Hammond, K. R., Hamm, R. M., Grassia, J., & Pearson, T. (1987). Direct comparison of the efficacy of intuitive and analytical cognition in expert judgment. IEEE.
Karlson, A. K., Iqbal, S. T., Meyers, B., Ramos, G., Lee, K., & Tang, J. C. (2010). Mobile taskflow in context: a screenshot study of smartphone usage. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Kim, H., Kim, J., & Lee, Y. (2005). An empirical study of use contexts in the mobile internet, focusing on the usability of information architecture. Information Systems Frontiers, 7(2), 175-186.
Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style. Psychological Bulletin, 133(3), 464.
Leganza, G. (2010). Topic overview: information architecture. Cambridge, MA: Forrester Research.
Mcvicar, E. (2012). Designing for Mobile, Part 1: Information Architecture. Retrieved from http://www.uxbooth.com/articles/designing-for-mobile-part-1-information-architecture/
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis : an expanded sourcebook, 2nd ed: SAGE Publications, Inc.
Niaz, M. (1987). Mobility-fixity dimension in Witkin's theory of field-dependence/independence and its implications for problem solving in science. Perceptual and Motor Skills, 65(3), 755-764.
Nosal, C. S. (1990). Psychologiczne modele umyslu [Psychological models of mind]. Warsaw, Poland: PWN.
Pillay, H. (1998). An investigation of the effect of individual cognitive preferences on learning through computer‐based instruction. Educational Psychology, 18(2), 171-182.
Rayner, S., & Cools, E. (Eds.). (2011). Style differences in cognition, learning, and management (Vol. 10). UK: Routledge.
Resmini, A., & Rosati, L. (2011). Pervasive information architecture: designing cross-channel user experiences: Elsevier.
Riding, R., & Cheema, I. (1991). Cognitive styles—an overview and integration. Educational psychology, 11(3-4), 193-215.
Riding, R., & Rayner, S. (2013). Cognitive styles and learning strategies: Understanding style differences in learning and behavior: Routledge.
Riding, R. J. (2002). School learning and cognitive style: Routledge.
Rosenfeld, L., & Morville, P. (2002). Information architecture for the world wide web: " O'Reilly Media, Inc.".
Russell-Rose, T., & Tate, T. (2012). Designing the search experience: The information architecture of discovery: Newnes.
Shye, A., Scholbrock, B., Memik, G., & Dinda, P. A. (2010). Characterizing and Modeling User Activity on Smartphones-Summary. Paper presented at the the ACM SIGMETRICS international conference on Measurement and modeling of computer systems.
Sohn, T., Li, K. A., Griswold, W. G., & Hollan, J. D. (2008). A diary study of mobile information needs. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Witkin, H. A. (1971). A manual for the embedded figures tests: Consulting Psychologists Press.