簡易檢索 / 詳目顯示

研究生: 金志昀
Chin, Chih-Yun
論文名稱: 溴化四烷基銨鹽作為電子收集層應用於高分子異質接面太陽能電池
Tetra-n-alkyl Ammonium Bromide salts as Electron Extraction Layers in Polymer Bulk Hetero-junction Solar Cells
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 85
中文關鍵詞: 太陽能電池電子收集層溴化銨鹽
外文關鍵詞: solar cell, electron extraction layer, ammonium bromide
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要是利用溴化四烷基銨鹽作為電子收集層的材料,應用於高分子異質接面太陽能電池中,其中本論文分為兩個部分。
    第一部分包含了不同碳鏈長度之溴化四烷基銨鹽粉末及薄膜結晶型態之探討,並進一步的用在太陽能電池中,由實驗結果發現此些溴化銨鹽皆可有效的降低陰極的功函數,使陰極與主動層達歐姆接觸,進而提升太陽能電池的光電轉換效率,其中四正辛基溴化銨鹽及四正癸己基溴化銨鹽的系統中開路電壓光及填充因子分別可達0.58V及0.64,且在癸己基溴化銨鹽的系統中電轉換效率甚至可達4.19%,可以媲美以鈣做為電子收集層的太陽能電池。
    第二部分為探討溫度變化對四正辛基溴化銨鹽薄膜的影響,由實驗結果發現隨著溫度的升高四正辛基溴化銨鹽薄膜修飾電極的效果漸漸消失且元件效率也開始降低,而當加熱過四正辛基溴化銨鹽的熔點,四正辛基溴化銨鹽薄膜將會轉變為一層絕緣層,使開路電壓及填充因子分別降為0.34V及0.28,且光電轉換效率只剩0.84%。

    In this dissertation, quaternary ammonium bromide salts (QABs) is applied for the electron extraction layer (EEL) in the polymer BHJ solar cell, the investigations included two sections as follows.
    The first section reports the powder and film crystallization of QABs with different alkyl chain length and, which is used in PV cells, the device performance shows that QABs can reduce the work function of cathode, causing the active layer and cathode to become ohmic contacted, thus enhancing the photoelectric conversion efficiency of PV cells. PV cells of tetraoctylammonium bromide (TOAB) and tetrahexadecyl ammonium bromide (THDAB) used as EEL shows the open circuit voltage (0.58V) and fill factor (0.64), and THDAB results in a better power conversion efficiency (4.19%) than Ca.
    The second section reports the thermal effect of the TOAB film. The device performance shows that the effect of modified electrode by TOAB film gradually disappears with the temperature increase , hence reducing the power efficiency of PV cells. When the temperature surpasses TOAB melting point, TOAB film will be transformed into an insulator. The open circuit voltage and fill factor will decrease to (0.34V) and (0.28), power efficiency descending steeply to (0.84%)

    第一章 緒論 1 1-1.太陽光能與再生性能源的必要性 1 1-2.有機太陽能電池 2 1-3.共軛高分子太陽能電池的工作原理 6 1-4.共軛高分子太陽能電池的特性分析 9 1-5.高分子太陽能電池電極收集層之介紹 13 1-5-1.電極收集層之作用機制與特性 13 1-5-2.電子收集層之發展近況 13 1-6.研究動機 15 第二章 溴化銨鹽碳鏈長度於高分子異質接面太陽能電池之影響 23 2-1.前言 23 2-2.實驗部分 24 2-2-1.藥品 24 2-2-2.太陽能電池之組裝及量測 25 2-2-3.X光繞射量測 29 2-2-4.原子力顯微鏡量測 30 2-3.結果與討論 31 2-3-1.元件電流電壓特性曲線分析 31 2-3-2.不同碳鏈長度溴化銨鹽薄膜粗糙度分析 32 2-3-3.不同碳鏈長度溴化銨鹽粉末及薄膜結晶性分析 33 2-3-3-1.不同碳鏈長度溴化銨鹽薄膜結晶性分析 34 2-3-3-2.不同碳鏈長度溴化銨鹽粉末結晶性分析 35 2-3-4.四正辛基溴化銨鹽電子收集層在不同金屬電極下之元件特性展現 38 2-3-5.不同碳鏈長度溴化銨鹽對元件特性影響之探討 39 2-4. 結論 40 第三章 四正辛基溴化銨鹽相轉移溫度對結晶及元件特性展現之研究 56 3-1. 前言 56 3-2. 實驗部分 57 3-2-1.藥品 57 3-2-2. 太陽能電池之組裝及量測 58 3-2-3.X光繞射量測 62 3-2-4.原子力顯微鏡量測 62 3-3.結果與討論 63 3-3-1. 元件電流電壓特性曲線分析 63 3-3-2. 四正辛基溴化銨鹽薄膜結晶度分析 64 3-3-3. 四正辛基溴化銨鹽薄膜粗糙度分析 67 3-4. 結論 69 第四張 總結與建議 78 4-1.總結與展望 78 4-2. 未來工作建議 80 參考文獻 81 自述 85

    1. S.E. Shaheen, D.S. Ginley, G.E. Jabbour, Mrs. Bull., 30,10 (2005).

    2. B. O'Regan, M. Grätzel, Nature, 353,737 (1999).

    3. A.Yakimov, S. R. Forrest, Appl. Phys. Lett., 80, 1667 (2002).

    4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474 (1992).

    5. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F.Wudl, Appl. Phys. Lett., 62, 585 (1993).

    6. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).

    7. W. Ma, C. Yang, X. Gong, L. Lee and A. J. Heeger, Adv. Funct. Mater., 15,1617(2005).

    8. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J.Heeger, Science, 317, 222 (2007).

    9. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,A. J. Heeger and C. J. Brabec, Adv. Mater., 18, 789 (2006).

    10. S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour,Appl. Phys.Lett., 79, 2996 (2001).

    11. J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998).

    12. C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen and N. S. Sariciftci,Synth.Met.,102,861(1999)

    13. P. Peumans and S.R. Forrest, Appl.Phys. Lett., 79, 126 (2001).

    14. H. Hoppe, N.S. Sariciftci, J. Mater. Res., 19, 1924 (2004).

    15. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl.Phys., 94, 6849 (2003).

    16. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T.Rispens, L. Sanchez and J. C. Hummelen, Adv. Fun. Mater., 11, 374 (2001).

    17. S.R. Forrest,Mrs Bull., 30, 28 (2005).

    18. C. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, springer.(2003).

    19. K. Lee, J. Y. Kim, S. H. Park, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger,Adv. Mater., 19, 2445 (2007).

    20. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20, 2376 (2008).

    21. H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008).

    22. G. C. Bazan, T.-Q. Nguyen, J. H. Seo, R. Yang, J. Z. Brzezinski, B. Walker, Adv. Mater. ,21, 1006–1011 (2009).

    23. Oh SH, Na SI, Jo J, Lim B , Vak D, Kim DY , Adv. Funct. Mater., 20, 1977(2010).

    24. Gunho Jo, Seok-In Na, Seung-Hwan Oh, Sangchul Lee, Tae-Soo Kim, Gunuk Wang, Minhyeok Choe, Woojin Park, Jongwon Yoon, Dong-Yu, Electronics, 10, 496(2009).

    25. Seok-In Na , Seung-Hwan Oh , Seok-Soon Kim , Dong-Yu Kim ,Org. Kim, Yung Ho Kahng, and Takhee Lee, Appl. Phys. Lett.,97, 213301(2010).

    26. Bert de Boer, Afshin Hadipour, Remko Foekema, Teunis van Woudenbergh,Magda M. Mandoc, Valentin D. Mihailetchi, and Paul W. M. Blom, Proc. SPIE.,18, 5464(2004).

    27. S.-N. Hsieh, S.-W. Hsiao, T.-Y. Chen, C.-Y. Li, C.-H. Lee, T.-F. Guo, Y.-J. Hsu, T.-L. Lin, Y. Wei and T.-C. Wen, J. Mater. Chem., 21, 8715 (2011).

    28. Maria L. Sushko and Alexander L. Shluger, Adv. Mater., 21, 1111 (2009).

    29. David J. Abdallah,Robert E. Bachman,Jerry Perlstein, Richard G. Weiss, J. Phys. Chem. B., 103, 9269 (1999)

    30. Wang Q, Habenschuss A, Xenopoulos A, Wunderlich B, Molecular Crystal and Liquid Crystals Science and Technology,264,115(1999).

    31. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Phys. A, 68, 447 (1999).

    32. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater., 16,2016 (2006).

    33. A. Xenopoulos, J. Cheng; M. Yasuniwa, B. Wunderlich, Molecular Crystals and Liquid Crystals,214, 1, 63(1992).

    34. J. Cheng, Alexander Xenopoulos, B. Wunderlich, Molecular Crystals and Liquid Crystals, 220: 1, 105 (1992).

    35. J. Cheng, Alexander Xenopoulos, B. Wunderlich, Molecular Crystals and Liquid Crystals, 220: 1, 127 (1992).

    36. J. Cheng, Alexander Xenopoulos, B. Wunderlich, Molecular Crystals and Liquid Crystals, 225: 1, 337(1997).

    37. J. Cheng, Alexander Xenopoulos, B. Wunderlich, Molecular Crystals and Liquid Crystals, 226: 1, 87 (1993).

    38. J. Cheng, Alexander Xenopoulos, B. Wunderlich, Molecular Crystals and Liquid Crystals, 264: 1, 115 (1995).

    39. Jonathan D. Servaites, Sina Yeganeh, Tobin J. Marks, and Mark A. Ratner, Adv. Funct. Mater.,20, 97(2010).

    40. Gang Li, Vishal Shrotriya, Yan Yao, Jinsong Huang and Yang Yang, J. Mater. Chem., 17, 3126 (2007).

    41. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster and P. W. M. Blom , Adv. Funct. Mater., 16, 699 (2006).

    42. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf and C. J. Brabec , Adv. Funct. Mater., 15, 1193(2005).

    無法下載圖示 校內:2016-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE