簡易檢索 / 詳目顯示

研究生: 李明宗
Lee, Ming-Tsung
論文名稱: 銫原子中多重態的電磁引發透明
Electromagnetically induced transparencies in a multi-level system of Doppler-broadened Cesium atom
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
中文關鍵詞: 電磁引發透明綴飾態
外文關鍵詞: dressed state, electromagnetically induced transparency
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討在多重能階下電磁引發透明現象的理論及實驗結
    果。實驗主要分成兩個部份,第一部份是在室溫銫原子的三能階系統下
    觀察雙重綴飾態的電磁引發透明現象;利用兩道強度及頻率不同的雷射
    光在銫原子中產生階梯式的電磁引發透明的訊號,強度較小的雷射光稱
    為探測雷射,反之則為耦合雷射;接著藉由聲光調制器來改變探測雷射
    光頻率的調變,進而觀察到在不同頻率調變下電磁引發透明現象分裂的
    情況,並在綴飾態的理論分析及密度矩陣的計算下得到不錯的擬合結
    果。第二部份是考慮多重能階的電磁引發透明現象,此實驗為第一部份
    的延伸,因此實驗參數也與第一部份大致相同,當探測雷射的頻率符合
    銫原子的能階躍遷2 2
    1/ 2 3/ 2 6 , 4 S F= →6P ,F=4且探測雷射強度增強時,我
    們可以在探測雷射的吸收光譜上看到數個電磁引發透明的訊號,並記錄
    不同雷射光強度下電磁引發透明現象的變化;利用綴飾態在多重能階系
    統下來分析我們所觀察到的光譜,同時也用密度矩陣做理論計算及模
    擬,並與實驗數據得到不錯的擬合結果。

    In this thesis, we investigate the electromagnetically induced transparency (EIT) in a
    multi-level system of cesium atom at room temperature for both experimental observations
    and theoretical simulations. There are two parts of experimental configuration. The first
    part is the observation of doubly dressed EIT by changing the detuning of probe laser,
    which is corresponding to the hyperfine transition |62S1/2, F=4> → |62P3/2, F=5>. In a
    ladder-type scheme, the double-peaked EITs were observed, produced by a strong coupling
    laser and a moderate probe laser, at different detuning of probe laser. The coupling laser is
    scanned across the hyperfine structure of |62P3/2> → |82S1/2> of Cs atom. The experimental
    observations are in good agreement with the numerical simulations.
    The second part is EITs in a multi-level system of Doppler-broadened cesium atom.
    Most experimental conditions are similar with the first part, while the probe laser was
    frequency-locked at the hyperfine transition |62S1/2, F=4> → |62P3/2, F=4> of Cs atom and
    the coupling laser was scanned across the |82S1/2, F=3> and |82S1/2, F=4> levels. The
    absorption spectra of the probe laser and their dependence on the intensity of the coupling
    laser were investigated. The experimental measurements are also in good agreement with
    the numerical simulations.

    摘要............... I Abstract ........II Acknowledgement......III Contents........IV List of Tables ..... VI List of Figures .......VII Chapter 1 ................... 1 1.1 Electromagnetically induced transparency...1 1.2 Overview ... 3 Chapter 2 ............ 4 2.1 Cesium atom... 4 2.2 The dressed-atom approach......... 6 2.3 Electromagnetically induced transparency...11 2.4 Density matrix approach ...... 13 2.4.1 Interaction picture ...... 13 2.4.2 Two-level system........... 14 2.4.3 Three-level system ..... 15 2.5 Simulation .. 18 Chapter 3 ....... 21 3.1 Laser systems ... 21 3.1.1 External cavity diode laser ...... 21 3.1.2 Injection-locked laser .... 23 3.1.3 Ti:sapphire ring-cavity laser........ 25 3.2 Frequency Control...... 27 3.2.1 Electronic feedback ...... 27 3.2.2 Doppler-free saturation absorption spectrum (DFSAS)............................. 28 3.2.3 Electromagnetically induced transparency (EIT).....32 3.2.4 Acousto-optical modulator (AOM) .. 33 3.3 Experimental Setup ...... 35 3.3.1 Doubly Dressed-State........ 35 3.3.2 Multi-Level System.... 37 Chapter 4 ........ 40 4.1 Splitting of double-peaked EIT ...... 40 4.2 The simulation with data .......... 44 4.3 Multi-level system................... 48 Chapter 5 ...... 57 Appendix A ..... 58 A.1 The quantization of a single-mode field... 58 A.2 The relative variation of the coupling υN. 61 A.3 Introduction of the Rabi frequency ...... 62 A.4 The anticrossing energy diagram (Fig. 2.4)... 63 A.5 dl and du calculations from -90~+90MHz ... 65 Appendix B ...... 66 Reference 69 Autobiography....... 73

    [1] A. Imamoğlu and S. E. Harris, Lasers without inversion: interference of dressed lifetime-broadened states, Opt. Lett. 14, 1344 (1989).
    [2] K. J. Boller, A. Imamoğlu and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991).
    [3] J. E. Field, K. H. Hahn and S. E. Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 67, 3062 (1991).
    [4] S.E. Harris and L.V. Hau, Nonlinear Optics at Low Light Levels, Phys. Rev. Lett. 82, 4611 (1999).
    [5] E. S. Fry, X. Li, D. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K.
    Tittel, C. Wang, S. R. Wilkinson, and S. Y. Zhu, Atomic coherence effects within the
    sodium D1 line: Lasing without inversion via population trapping, Phys. Rev. Lett. 70,
    3235 (1993).
    [6] W. E. van der Veer, R. J. J. van Diest, A. Dönszelmann, and H. B. van Linden van den Heuvell, Experimental demonstration of light amplification without population inversion, Phys. Rev. Lett. 70, 3243 (1993).
    [7] J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, Role of electromagnetically induced transparency in resonant four-wave-mixing schemes, Phys. Rev. A 53, 543 (1996).
    [8] Y. Li and M. Xiao, Enhancement of nondegenerate four-wave mixing based on
    electromagnetically induced transparency in rubidium atoms, Opt. Lett. 21, 1064 (1996).
    [9] M. Paternostro, M. S. Kim and B. S. Ham, Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime, Phys. Rev. A 67, 023811 (2003).
    [10] S. Knappe, J. Kitching, L. Hollberg, Miniature vapor-cell atomic-frequency references, Appl. Phys. Lett. 81, 553 (2002).
    [11] H. R. Gray, R. M. Whitley and C. R. Stroud, Coherent trapping of atomic populations, Opt. Lett. 3, 218 (1978).
    [12] A. Weiss, F. Sander, and S. I. Kanorsky, in IEEE Technical Digest, 5th European
    Quantum Electronics Conference '94 (Optical Society of America, Washington, DC, 1994), p. 252.
    [13] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair and M. H. Dunn, Spatial
    Consequences of Electromagnetically Induced Transparency: Observation of
    Electromagnetically Induced Focusing, Phys. Rev. Lett. 74, 670 (1995).
    [14] R.R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Two-photon effects in continuous-wave electromagnetically-induced transparency, Opt. Commun. 119. 61 (1995).
    [15] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn,
    Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems, Phys. Rev. A 52, 2302 (1995).
    [16] M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, Electromagnetically induced
    transparency Optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
    [17] M. Yan, E. G. Rickey, and Y. Zhu, Observation of doubly dressed states in cold atoms, Phys. Rev. A 64, 013412 (2001).
    [18] S. R. de Echaniz, A. D. Greentree, A. V. Durrant1, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, Observations of a doubly driven V system probed to a fourth level in laser-cooled rubidium, Phys. Rev. A 64, 013812 (2001).
    [19] C. Cohen-Tannoudji and S. Reynaud, Dressed-Atom Description of Resonance
    Fluorescence and Absorption Spectra of a Multi-Level Atom in an Intense Laser Beam, J. Phys. B: At. Mol. Phys. 10, 345 (1977).
    [20] C. Cohen-Tannoudji, J. D. Roc, G. Grvnberg, Atom-Photon Interactions: Basic
    Processes and Applications, John Wiley and Sons, New York, 1992.
    [21] D. A. Steck, Cesium D Line Data, http://steck.us/alkalidata/.
    [22] N. B. Delone, a V. P. Krainovb, AC Stark shift of atomic energy levels, Phys-Usp, 42, 669-687 (1999).
    [23] S. H. Autler and C. H. Townes, Stark Effect in Rapidly Varying Fields, Phys. Rev. 100, 703 (1955).
    [24] C. J. Foot, Atomic Physics, Chapter 7, Oxford University Press, Oxford, 2005.
    [25] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188 (1969).
    [26] R. E. Grove, F. Y. Wu, and S. Ezekiel, Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field, Phys. Rev. A 15, 227 (1977).
    [27] J. Geo-Banacloche, Y. Li, S. Jin and M. Xaio, Electromagnetically induced
    transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A 51, 576 (1995).
    [28] S. Shepherd, D. J. Fulton, and M. H. Dunn, Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium, Phys. Rev. A 54, 5394 (1996).
    [29] J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, Comparison of wavelength
    dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced
    transparency, Phys. Rev. A 59, 4675 - 4684 (1999).
    [30] J. J. Sakurai, Modern Quantum Mechanics, Revised Ed., Addison-Wesley,
    Massachusetts (1994).
    [31] R. Y. Chang, PhD Dissertation, Quantum Interference on Dressed-Atom and
    L-uncoupling on Diatomic Molecule, Department of Physics, National Cheng Kung
    University, Tainan, Taiwan (2007).
    [32] G. S. Agarwal, W. Harshawardhan, Inhibition and Enhancement of Two Photon
    Absorption, Phys. Rev. Lett. 77, 1039. (1996).
    [33] J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen and Y. Jiang,
    Electromagnetically induced inhibition of two-photon absorption in sodium vapor, Phys. Rev. A 61, 023401. (2000).
    [34] F. Y. Wu and S. Ezekiel, M. Ducloy, and B. R. Mollow, Observation of Amplification in a Strongly Driven Two-Level Atomic System at Optical Frequencies, Phys. Rev. Lett. 38, 1077 (1977).
    [35] M. Mitsunaga, T. Mukai, K. Watanabe and T. Mukai, Dressed-atom spectroscopy of cold Cs atoms, J. Opt. Soc. Am. B, 13, 12 (1996).
    [36] U. G. R. Hadley, Injection locking of diode lasers, IEEE J. Quantum Electron. 22, 419 (1986).
    [37] P. Spano, S. Piazzolla, and M. Tamburrini, Frequency and intensity noise in
    injection-locked semiconductor lasers: Theory and experiments, IEEE J. Quantum Electron. 22, 427(1986).
    [38] H. R. Telle, Injection locking of a 1.3 μm laser diode to a LiNdP4O12 laser yields
    narrow linewidth emission, Electron. Lett. 22, 150 (1986).
    [39] P. F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3 JOSA B, 3,
    125-133 (1986).
    [40] S. Kobayashi, Y. Yamamoto, M. Ito, T. M. Kimura, Direct frequency modulation in AlGaAs semiconductor lasers, IEEE J. Quantum Electron, 18, 582 (1982).
    [41] A. Krishna, K. Pandey, A. Wasan, V. Natarajan, High-resolution hyperfine
    spectroscopy of excited states using electromagnetically induced transparency, Europhys. Lett., 72 (2), 221 (2005).
    [42] C. E. Tanner, A. E. Livingston, R. J. Rafac, F. G. Serpa, K. W. Kukla, H. G. Berry, L. Young, and C. A. Kurtz, Measurement of the 6p2P3/2 state lifetime in atomic cesium, Phys.
    Rev. Lett. 69, 2765 (1992).
    [43] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states, Phys. Rev. A 60, 3648 (1999).
    [44] L. Young, W. T. Hill, S. J. Sibener, Stephen D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting, Phys. Rev. A 50, 2174 (1994).
    [45] S. Rydberg and S. Svanberg, Investigation of the np 2P3/2 Level Sequence in the Cs I Spectrum by Level Crossing Spectroscopy, Phys. Scr. 5 209 (1972).
    [46] R. W. Schmieder, A. Lurio, W. Happer and A. Khadjavi, Level-Crossing
    Measurement of Lifetime and HFS Constants of the 2P3/2 States of the Stable Alkali Atoms, Phys. Rev. A 2, 1216 (1970).
    [47] R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, Hyperfine-Structure
    Measurements of Excited S States of the Stable Isotopes of Potassium, Rubidium, and
    Cesium by Cascade Radio-Frequency Spectroscopy, Phys. Rev. A 8, 2792 (1973).
    [48] C. Fort, F. S. Cataliotti, P. Raspollini, G. M. Tino and M. Inguscio, Optical
    double-resonance spectroscopy of trapped Cs atoms: hyperfine structure of the 8s and 6d excited states, Z. Phys. D 34, 91-95 (1995).

    下載圖示 校內:立即公開
    校外:2009-02-06公開
    QR CODE