簡易檢索 / 詳目顯示

研究生: 魏浩涵
Wei, Hao-Han
論文名稱: 以離子佈植技術製作氮摻雜的氧化鋅奈米線及其性質探討
Fabrication and Characterization of Nitrogen-implanted ZnO Nanowires
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 119
中文關鍵詞: p-n接面二極體拉曼光譜光激發光螢光離子佈植氧化鋅奈米線氮摻雜的氧化鋅
外文關鍵詞: Free exciton, Bound exciton, Ohmc contact, LVMs, p-n diode, PL, projected range
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗先利用化學氣相沉積法(Chemical Vapor Deposition, CVD)製程,利用Zn粉(99.999%)與O2/N2(10:30 sccm)混合氣體,於650°C、1 torr壓力下,合成單晶的氧化鋅奈米線於Si或Sapphire基板上。再利用離子佈植技術(Ion Implantation),分別以30 keV、40 keV與50 keV的佈植能量,將N+離子摻雜進氧化鋅奈米線中,佈植劑量皆為5×1015 ions/cm2。佈植完成後利用快速退火技術(Rapid Temperature Annealing, RTA)修復奈米線上受損的晶格,及活化摻雜離子。退火溫度為600°C ,最高溫度持溫時間3 min。實驗目的主要為利用離子佈植技術(Ion Implantation)製作出氮摻雜的氧化鋅奈米線。
    在分析上利用掃瞄式電子顯微鏡 (Scanning Electron Microscopy, SEM)及穿透式電子顯微鏡 (Transmission Electron Microscopy)了解其表面形貌與微結構,觀察N+離子佈植對奈米線的影響。配合歐傑電子能譜儀(Auger Electron Spectrometer, AES)及顯微拉曼光譜儀 (Microscopes Raman Spectrometer)技術,確定N元素是否有摻雜進氧化鋅奈米線及其摻雜濃度。最後在利用光致螢光激發光譜儀 (Photoluminescence, PL),觀察N摻雜的奈米線,在室溫及低溫發光性質。同時利用電性量測,觀察佈植前後單根氧化鋅奈米線的電阻率差異;並製作單根奈米線的p-n接面二極體,證明N+離子佈植確實可以用於p-type氧化鋅奈米線的製作。

    In this research, we manufactured the ZnO nanowires on Si and sapphire substrate by CVD process. The source of reaction are Zn powder (99.999%) and O2/N2 mixed gas. Growth temperature is 650°C and work pressure is 1 torr. Subsequently, we doped the nitrogen atoms into ZnO nanowires by ion implantation. The incident energy of nitrogen atoms were 30 keV, 40keV and 50 keV, respectively. The dose of nitrogen atoms were 5×1015 ions/cm2 for all ZnO nanowires . After ion implantation, all sample were anneaed by RTA method at 650°C for 3 mins.
    The image of morphology is analyzed by SEM. Microstructure, defcet surrounding, defect distribution and defect size were resolved by TEM. The nitrogen atom in ZnO nanowires is confirmed by Auger electron spectrometer and Raman spectra. Besides a detailed investigation with photoluminescence of the annealing behavior in the N2 atmosphere is presented. I-V measurement showed the difference in resistivity between un-doped ZnO nanowires and N-doped ZnO nanowires. The p-n junction in single ZnO nanowire were fabricated by nitrogen ion implantation.

    目錄 中文摘要..........................................................................................I Abstract...................................................................................................III 致謝……………………………………………………………………..IV 目綠.........................................................................................................VII 圖目綠...................................................................................................X 表目綠.................................................................................................XVII 第1章 前言及研究目的.........................................................................1 1.1 前言............................................................................................1 1.2 研究目的....................................................................................4 第2章 理論基礎與文獻回顧................................................................6 2.1 氧化鋅簡介 ................................................................................6 2.1.1氧化鋅的晶體結構................................................................6 2.1.2氧化鋅的能帶結構 8 2.1.3氧化鋅的晶格振盪 9 2.1.4未摻雜氧化鋅的電性質.......................................................12 2.1.5氧化鋅的本質缺陷...............................................................16 2.1.6氧化鋅的摻雜.......................................................................19 2.1.7氮摻雜的氧化鋅...................................................................22 2.1.8利用離子佈植法製作p-type氧化鋅...................................23 2.2 化學氣相沈積法........................................................................29 2.3 離子佈植....................................................................................31 2.3.1離子佈植的基本原理...........................................................31 2.3.2阻滯效應(Stopping Mechanism)..........................................32 2.3.3離子射程(Ion Range)............................................................32 2.3.4通道效應(Channeling Effect)...............................................33 2.3.5晶格破壞及退火...................................................................33 2.4 光激發光螢光(Photoluminescence)......................................38 2.5拉曼散射....................................................................................40 第3章 實驗步驟與分析儀器.........................................................44 3.1 實驗流程....................................................................................44 3.1.1化學氣相沉積法成長奈米線.............................................45 3.1.3快速退火...............................................................................48 3.1.4電性量測.............................................................................49 3.2 結構及元素分析........................................................................51 3.3 光學性質分析............................................................................54 第 4 章 結果與論..................................................................................56 4.1 SRIM-2008 模擬氮離子於氧化鋅奈米線中的分佈..............56 4.2佈植前後及退火後奈米線的表面形貌及晶體結構分析......63 4.2.1 SEM分析.............................................................................63 4.2.2 TEM分析..............................................................................68 4.3 元素成分分析............................................................................75 4.4 佈植前後及退火後奈米線的拉曼光譜分析............................84 4.5 光學性質分析............................................................................89 4.5.1室溫PL光譜分析...............................................................89 4.5.2變溫PL光譜分析................................................................96 4.6 電性質分析…………………………………………………….107 4.6.1 室溫電阻率量測…………………………………………107 4.6.2 p-n特性量測……………………………………………..113 第 5 章 結論........................................................................................114 參考文獻 ................................................................................116

    1. J. D. P, M.D.D., P. B. Griffin, Silicon VLSI Technology, Fundamentals,
    Practice and Modeling. 2000.
    2. Lieber, C.M., The Incredible Shrinking Circuit. Scientific American, 2001. 285: p. 58.
    3. Lu, J.G., P. Chang, and Z. Fan, Quasi-one-dimensional metal oxide materials--Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 2006. 52(1-3): p. 49-91.
    4. Duan, X., et al., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003. 425(6955): p. 274-278.
    5. Gudiksen, M.S., et al., Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002. 415(6872): p. 617-620.
    6. Huang, M.H., et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(5523): p. 1897-1899.
    7. Comini, E., et al., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002. 81(10): p. 1869-1871.
    8. Qin, Y., X. Wang, and Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008. 451(7180): p. 809-813.
    9. Pearton, S.J., Norton, D.P. , Ip, K. , Heo, Y.W. , Steiner, T., Recent advances in processing of ZnO. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2004. 22(3): p. 932.
    10. Yang, P., The chemistry and physics of semiconductor nanowires. MRS Bulletin, 2005. 30(2): p. 85.
    11. Yamamoto, T., Katayama-Yoshida, Hiroshi, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics, Part 2: Letters, 1999. 38(2 B): p. L166-L169
    12. Zhong, J., et al., Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Applied Physics Letters, 2003. 83(16): p. 3401-3403.
    13. Bae, S.Y., et al., Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation. The Journal of Physical Chemistry B, 2005. 109(7): p. 2526-2531.
    14. Cui, J.B. and U.J. Gibson, Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays. Applied Physics Letters, 2005. 87(13): p. 133108-3.
    15. Xu, C.X., et al., Magnetic nanobelts of iron-doped zinc oxide. Applied Physics Letters, 2005. 86(17): p. 173110-3.
    16. J. G. Lu, L.P.Z., Z. Z. Ye , F. Zhuge, B. H. Zhao, D. W. Ma, L. Wang and J. Y. Huang, Reproducibility and stability of N–Al codoped p-type ZnO thin films Journal of Materials Science, 2006. 41: p. 467.
    17. Xiang, B., et al., Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano Letters, 2007. 7(2): p. 323-328.
    18. Park, C.H., S.B. Zhang, and S.-H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B, 2002. 66(7): p. 073202.
    19. Zhuge, F., et al., ZnO p-n homojunctions and ohmic contacts to Al--N-co-doped p-type ZnO. Applied Physics Letters, 2005. 87(9): p. 092103-3.
    20. Duan, X., et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001. 409(6816): p. 66-69.
    21. Ozgur, U., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301-103.
    22. Reeber, R.R., Lattice parameters of ZnO from 4.2[degree] to 296[degree]K. Journal of Applied Physics, 1970. 41(13): p. 5063-5066.
    23. Kobayashi, A., O.F. Sankey, and J.D. Dow, Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO. Physical Review B, 1983. 28(2): p. 946.
    24. Schubert, M., Wurtzite-Structure Materials (Group-III Nitrides, ZnO) Infrared Ellipsometry on Semiconductor Layer Structures, 2005. 209: p. 109.
    25. Tsuboi, M. and A. Wada, Optically Active Lattice Vibrations in Wurtzite-Type Crystals of Zinc Oxide and Cadmium Sulfide. The Journal of Chemical Physics, 1968. 48(6): p. 2615-2618.
    26. Lu, Y.F., et al., The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition. Journal of Applied Physics, 2000. 88(1): p. 498-502.
    27. Ashkenov, N., et al., Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics, 2003. 93(1): p. 126-133.
    28. B. H. Bairamov, A.H., G. Irmer, V. V. Toporov, E. Ziegler,, Raman study of the phonon halfwidths and the phonon?lasmon coupling in ZnO. physica status solidi (b), 1983. 119(1): p. 227-234.
    29. Albrecht, J.D., et al., High field electron transport properties of bulk ZnO. Journal of Applied Physics, 1999. 86(12): p. 6864-6867.
    30. Tadatsugu Minami, H.S., Hidehito Nanto, Shinzo Takata Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 1985. 24: p. L781.
    31. Van de Walle, C.G., Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters, 2000. 85(5): p. 1012.
    32. Kohan, A.F., et al., First-principles study of native point defects in ZnO. Physical Review B, 2000. 61(22): p. 15019.
    33. Van de Walle, C.G., Defect analysis and engineering in ZnO. Physica B: Condensed Matter, 2001. 308-310: p. 899-903.
    34. Reshchikov, M.A. and R.Y. Korotkov, Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Physical Review B, 2001. 64(11): p. 115205.
    35. Seung Yeop Myong, S.J.B., Chang Hyun Lee, Woo Young Cho, Koeng Su Lim Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl3(6H2O) as New Doping Material. Japanese Journal of Applied Physics, 1997. 36: p. L1078.
    36. Ko, H.J., et al., Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2000. 77(23): p. 3761-3763.
    37. Cox, S.F.J., et al., Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide. Physical Review Letters, 2001. 86(12): p. 2601.
    38. Walukiewicz, W., Defect formation and diffusion in heavily doped semiconductors. Physical Review B, 1994. 50(8): p. 5221.
    39. Van de Walle, C.G., et al., First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Physical Review B, 1993. 47(15): p. 9425.
    40. D. C. Look, R.L.J., J. R. Sizelove, N. Y. Garces, N. C. Giles, L. E. Halliburton,, The path to ZnO devices: donor and acceptor dynamics. physica status solidi (a), 2003. 195(1): p. 171-177.
    41. Look, D.C., et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied Physics Letters, 2002. 81(10): p. 1830-1832.
    42. Ye, Z.-Z., et al., Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth, 2003. 253(1-4): p. 258-264.
    43. Lu, J., et al., p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters, 2003. 57(22-23): p. 3311-3314.
    44. Sato, Y. and S. Sato, Preparation and some properties of nitrogen-mixed ZnO thin films. Thin Solid Films, 1996. 281-282(1-2): p. 445-448.
    45. Li, X., et al. Chemical vapor deposition-formed p-type ZnO thin films. in Papers from the 49th International Symposium of the American Vacuum Society. 2003. Denver, Colorado (USA): AVS.
    46. Yang, C.-C., et al., Effect of annealing atmosphere on physical characteristics and photoluminescence properties of nitrogen-implanted ZnO thin films. Journal of Crystal Growth, 2005. 285(1-2): p. 96-102.
    47. Lin, C.-C., et al., Properties of nitrogen-implanted p-type ZnO films grown on Si[sub 3]N[sub 4]/Si by radio-frequency magnetron sputtering. Applied Physics Letters, 2004. 84(24): p. 5040-5042.
    48. Reuss, F., et al., Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO. Journal of Applied Physics, 2004. 95(7): p. 3385-3390.
    49. A. Zeuner, H.A., D.M. Hofmann, B.K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, M. Dworzak,, Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO. physica status solidi (b), 2002. 234(3): p. R7-R9.
    50. D. L. Smith, Thin films by chemical vapor deposition principle and practice. (Mcgraw-Hill, USA), 1995.
    51. Current, M.I., Basics of ion implantation, Ion beam press. TX, 1997.
    52. http://140.116.176.21/www/index.htm, 成功大學微奈米中心儀器使用手冊.
    53. 王孟亮, 拉曼光譜學及其在生化上的應用. 科學月刊, 1983. 0167.
    54. Hirsch, P., Electron Microscopy of Thin Crystals. Robert E. Krieger, New york, 1997.
    55. 楊永盛, 楊., 電子顯微鏡應用與原理. 文京圖書.
    56. 潘扶民, 歐傑電子能譜儀分析. 材料分析, 1998: p. 305.
    57. 郭正次, 激發光光譜分析. 材料分析 1998: p. 238.
    58. Sun, J.-C. and et al., Realization of Ultraviolet Electroluminescence from ZnO Homojunction Fabricated on Silicon Substrate with p-Type ZnO:N Layer Formed by Radical N 2 O Doping. Chinese Physics Letters, 2008. 25(12): p. 4345.
    59. Teke, A., et al., Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Physical Review B, 2004. 70(19): p. 195207.
    60. Rommeluere, J.F., et al., Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2003. 83(2): p. 287-289.
    61. Reddy, N.K., Q. Ahsanulhaq, and Y.B. Hahn, Influence of RTA treatment on the physical properties of well-aligned ZnO nanorods. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(3): p. 368-372.
    62. Wang, L. and N.C. Giles, Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. Journal of Applied Physics, 2003. 94(2): p. 973-978.
    63. Donald A. Neamen, Semiconductor Physics and Devices, Third Edition.

    下載圖示 校內:2010-07-30公開
    校外:2010-07-30公開
    QR CODE