簡易檢索 / 詳目顯示

研究生: 吳致年
Wu, Chih-Nien
論文名稱: 複合材料等效力學性質之數值研究
Numerical studies of homogenized mechanical properties of composite materials
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 91
中文關鍵詞: 複合材料數值模擬
外文關鍵詞: composite materials, numerical
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以彈性理論為基礎的複合材料理論,預測兩相複合材料的等效力學性質,以及應力應變在複合材料中的分布。本論文的目的,是以有限元素法計算不同均質複合材料的線彈性性質,如Voigt, Reuss 以及Hashin-Strikman 等模型,並將數值模擬結果與複合材料理論相互比對,在二維與三維的模擬結果中顯示,有限元的計算結果與古典複合材理論解很接近。此外,微結構對應的複合材料的上下限模型也被驗證。兩相複合材中的內含物裡面,假如內含物足夠小的話,內含物內的應力分佈是均勻的,與Eshelby的理論一致。另外,本論文也有探討介面上的應力與應變的連續與不連續性,以及均質線黏彈性的性質。

    Theory of composite materials, based on the elasticity theory, predicts the effective mechanical properties of two-phase materials, as well as the stress and strain distributions inside the composites. The purpose of this thesis is to numerically study, by the finite element method, the homogenized, linear elastic properties of various composite models, such as Voigt, Reuss and Hashin-Strikman models, and to correlate the numerical results with the composite theory. In both two- and three-dimensional cases, the FEM calculated results are in good agreement with the classical composite theory. Furthermore, the microstructures which correspond the the upper and lower bounds of the composite models are verified. The stress distribution inside the inclusion of the two-phase composite is uniform, consistent with the Eshelby’s uniformity theorem. In addition, the discontinuity and continuity of the interfacial stresses and strains are discussed. Homogenization of linear viscoelastic properties is also studied.

    TABLE OF CONTENTS CHINESE ABSTRACT ii ABSTRACT iii LIST OF TABLES vii LIST OF FIGURES viii NOMENCLATURE xi 1 Introduction 1 1.1 Motivation and goals1 1.2 Literature review 1 1.3 Outline of this thesis 3 2 Theory 4 2.1 Three-dimensional theory 4 2.1.1 3D homogenized bulk modulus 7 2.2 Two-dimensional theory 11 2.2.1 2D homogenized bulk modulus 12 2.3 Voigt and Reuss homogenization 15 2.4 Eshelby’s uniformity theorem 18 3 Finite element calculations 21 3.1 Finite element backgrounds 21 3.2 Finite element models 23 4 Results and discussion 39 4.1 Homogenized bulk modulus 40 4.2 Homogenized shear modulus 42 4.3 Homogenized Young’s modulus 44 4.4 Homogenized Poisson’s ratio 49 4.5 Stress uniformity 49 4.6 Homogenized 2D viscoelastic properties 49 5 Conclusions and Future Work 57 LIST OF REFERENCES 59 APPENDICES Appendix A: Relationships among elastic moduli 61 Appendix B: Deformation energy in elastic materials 62 Appendix C: Presentation slide 63 VITA 91

    [1] K.J. Bathe. Finite Element Procedures. Prentice Hall: Englewood Cliffs. NJ. 1996.

    [2] Y. Benveniste, G.W. Milton. The effective medium and the average field approximations vis-`a-vis the Hashin–Shtrikman bounds. I. The self-consistent scheme in matrix-based composites. Journal of the Mechanics and Physics of Solids. 2010; 58(7):1026–1038.

    [3] Y. Benveniste, G.W. Milton. The effective medium and the average field approximations vis-`a-vis the Hashin–Shtrikman bounds. II. The generalized self-consistent scheme in matrix-based composites. Journal of the Mechanics and Physics of Solids. 2010; 58(7):1039–1056.

    [4] J.G. Berryman. Bounds and estimates for elastic constants of random polycrystals of laminates. International Journal of Solids and Structures. 2005; pp. 14.

    [5] J. Bouquerel, K. Verbeken, B.C. De Cooman. Microstructure-based model for the static mechanical behaviour of multiphase steels. Acta Materialia. 2006; 54(6):1443–1456.

    [6] R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and applications of finite element analysis, 3rd. Edition, John Wiley and Sons, New York, NY, 1989.

    [7] Z. Gao. A circular inclusion with imperfect interface: Eshelby’s tensor and related problems. Journal of Applied Mechanics. 1995; 62(4):860–866.

    [8] X.L. Gao, H.M. Ma. Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. Journal of the Mechanics and Physics of Solids. 2010; 58(5): 779–797.

    [9] Z. Hashin, S. Shtrikman. Note on a variational approach to the theory of composite elastic materials. Journal of the Franklin Institute. 1961; 271(4): 336–341.

    [10] Z. Hashin, S. Shtrikman. On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids. 1962; 10(4):335–342.

    [11] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids. 1963; 11(2):127–140.

    [12] Z. Hashin. Analysis of composite materials–A survey. Journal of Applied Mechanics. 1983; 50:481–505.

    [13] I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia. Particulate reinforced metal matrix composites – a review. Journal of Materials Science. 1991; 26(5):1137–1156.

    [14] Iwona Jasiuk. Stress invariance and exact relations in the mechanics of composite materials: Extensions of the CLM result–A review. Mechanics of Materials. 2009; 41(4):394–404.

    [15] Cheng Liu. On the minimum size of representative volume element: An experimental investigation. Experimental Mechanics. 2005; 45(3):238–243.

    [16] G.W. Milton, L. Erickson, D. Kinderlehrer, R. Kohn, J. L. Lions. Modelling the properties of composites by laminates, In Homogenization and Effective Moduli of Materials and Media J Springer Verlag: Berlin, 150–175. 1986.

    [17] G.W. Milton. On Optimizing the Properties of Hierarchical Laminates Using Pontryagin’s Maximum Principle. Multiscale Modeling and Simulation. 2005; 3(3):658–679.

    [18] Ilaria Monetto, W.J. Drugan. A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities. Journal of the Mechanics and Physics of Solids. 2009; 57(9):1578–1595.

    [19] T. Mura. Micromechanics of defects in solids, 2nd Ed. Springer: New York. 1987.

    [20] A.D. Nashif, D.I. Jones, J.P. Henderson. Vibration Damping. John Wiley: New York. NY. 1985.

    [21] J.F. Nye. Physical properties of crystals: their representation by tensors and matrices. Clarendon Press: Oxford. 1957.

    [22] I.A. Ovidko, A.G. Sheinerman. Elastic Fields of Inclusions in Nanocomposite Solids. Reviews on Advanced Materials Science 2005; 9(1):17–33.

    [23] B. Paul. Prediction of elastic constants of multiphase materials. Transactions of the Metallurgical Society of AIME. 1960; 218:36–41.

    [24] Micha¨el Peigney. A non-convex lower bound on the effective energy of polycrystalline shape memory alloys. Journal of the Mechanics and Physics of Solids. 2009; 57(6):970–986.

    [25] S. Timoshenko, J.N. Goodier. Theory of Elasticity. (3rd edn). McGraw-Hill: New York. 1970.

    [26] L.J. Walpole. On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids. 1969; 17(4):235–251.

    [27] K. Washizu. Variational Methods in Elasticity and Plasticity. (3rd edn), Claredon Press: New York. 1982.

    [28] The COMSOL webpage. http://www.comsol.com/ [1 March 2011].

    [29] Wennan Zou, Qichang He, Mojia Huang, Quanshui Zheng. Eshelby’s problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids. 2010; 58(3): 346–372.

    下載圖示 校內:2013-09-07公開
    校外:2013-09-07公開
    QR CODE