簡易檢索 / 詳目顯示

研究生: 黃源聖
Huang, Yuan-Sheng
論文名稱: 奈米級衛星軌道彈射艙減震設計與分析
Design and Analysis of Vibration Isolator of a Nano-Satellite Orbital Deployer
指導教授: 鄭泗滄
Jeng, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 51
中文關鍵詞: 衛星彈射艙模態分析衝擊響應頻譜結構動態修正
外文關鍵詞: Deployer, Modal Analysis, Shock Response Spectrum, Structure Dynamic Modification
相關次數: 點閱:104下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的研究主旨為研發出能夠搭載立方衛星(CubeSat)的載具。此載具連接在火箭,在發射過程中保護立方衛星以及主衛星的安全,並能在進入軌道中把立方衛星彈射出去,一般我們稱此載具為彈射艙。本文將設計與製造出一個彈射艙的原型。經由有限元素商業軟體ANSYS的分析,模擬此彈射艙是否能承受PSLV火箭的發射環境。在有限元素模擬中,彈射艙與立方衛星將會模擬加速度環境、正弦波振動、隨機振動與衝擊測試。對於前3種測試,本文使用ANSYS內相對應的模組來作模擬,而對於衝擊測試,本文使用衝擊響應頻譜(Shock Response Spectrum, SRS)的概念,將衝擊的時域訊號轉為響應頻譜,以加快計算的效率。本文並對實體作實驗模態分析,以驗證有限元素模型的準確性。本文第二個研究主題在於如何藉由更改彈射艙的結構特性,讓彈射艙內的衛星達到減振效果。本文使用WSVI (Whole-spacecraft vibration isolation)概念,把減振設計作在彈射艙上,而不是更改衛星的結構特性。本文另外使用結構動態修正(Structure Dynamic Modification, SDM)來作為結構修改的依據,此方法將加速設計修改的效率。

    The main goal of this thesis develops a deployer which can accommodate the CubeSat. The deployer connects with the rocket, and protects the CubeSat and main satellite. When the rocket arrive the orbit, the deployer can deploy the CubeSat into orbit. This thesis present a process that design and manufacture the deployer. With the commercial software of the finite element method, ANSYS, the launch environment of the PSLV rocket was simulated. In the simulation, the deployer with the CubeSat is simulated in acceleration test, sine vibration, random vibration and shock test. The first three kinds of test can be simulated with the solver in ANSYS. In the shock test, this thesis use the shock response spectrum (SRS) to transform the time domain of shock test, in order to simulate the shock test in the response spectrum, which can increase the simulation efficiency.The second goal researches the vibration isolating effect of deployer. This thesis uses the concept of whole-spacecraft vibration isolation (WSVI), which designs the isolation in the deployer, not in the satellite. This thesis also uses the structure dynamic modification (SDM) to increase the simulation efficiency.

    中文摘要 ............................................... I Abstract ............................................ II 致謝 ................................................ III 目錄 ................................................ IV 表目錄 .............................................. VII 圖目錄 ............................................. VIII 第一章 緒論 ............................................. 1 1.1 研究背景與動機 ...................................... 1 1.2 文獻回顧 ........................................... 2 1.3 研究目標 ........................................... 4 1.4 研究方法與論文架構 ................................... 4 第二章 理論背景 ......................................... 6 2.1 實驗模態分析........................................ 6 2.1.1 實驗模態分析執行流程 .............................. 6 2.1.2 模態參數識別 ..................................... 7 2.2 衝擊響應頻譜之概念 .................................. 11 2.3 結構動態修正法 ...................................... 12 第三章 彈射艙結構設計 .................................... 15 3.1 立方衛星的結構配置................................... 15 3.2 彈射艙的結構配置 .................................... 18 3.2.1 主結構........................................... 18 3.2.2 開門機構 ......................................... 19 3.2.3 推力機構 ........................................ 20 3.2.4 彈射艙模擬分析的簡化模型 ........................... 20 3.3 彈射艙與立方衛星的有限元素分析與模型驗證 ................ 21 3.3.1 立方衛星模型驗證 .................................. 21 3.3.2 彈射艙模型驗證 .................................... 24 3.3.3 實驗模態與有限元素模擬驗證差異討論 ................... 25 3.4 彈射艙與立方衛星的環境測試模擬 ......................... 27 3.4.1 自然頻率評估 ..................................... 30 3.4.2 15g加速度(acceleration level)測試 ................ 31 3.4.3 4g正弦波振動(sine vibration)測試 ................. 32 3.4.4 隨機振動(random vibration)測試.................... 33 3.4.5 衝擊測試(shock test) ............................. 34 3.5 彈射實驗 .......................................... 35 3.5.1 水平彈射 ........................................ 35 3.5.2 垂直彈射 ........................................ 36 第四章 減振設計與分析.................................... 38 4.1 使用WSVI概念設計減振器與實驗 ......................... 38 4.2 使用SDM方法計算修改減振器後的模態參數 ................. 41 第五章 結論與未來展望 ................................... 43 5.1 本文歸納 .......................................... 43 5.2 本文結論 .......................................... 43 5.3 本文貢獻 .......................................... 44 5.4 未來展望 .......................................... 44 參考文獻 .............................................. 45 附錄 .................................................. 48 A 從反應時域(Response History)推導衝擊反應頻譜(SRS) ....... 48 A.1 使用解析方法轉換SRS ................................. 48 A.2 使用數值方法轉換SRS ................................. 51

    1. Miau, J.-J. and Juang, J.-C., “A university nano-satellite program: PACESAT,” 5th IAA Symposium on Small Satellites for Earth Observation, IAA-B5-0 510P, Berlin, Germany, April 4 - 8, 2005.
    2. Hu, C.-F., Lu, S.-T., Jenq, S.-T., Juang, J.-C. and Miau, J.-J., “Analysis and Design of the LEAP Structure System,” The Fourth Asian Space Conference, Taipei, Taiwan, October 1-3, 2008.
    3. Juang, J.-C., Tsai, Y.-F., Tsai, C.-T., Jenq, S.-T., et. al., “Development and Test of the CKUTEX Microsatellite,” Journal of Aeronautics, Astronautics & Aviation, A, v. 43 (3), 2011, pp. 219-227.
    4. “CubeSat Design Specification,” Rev. 12, The CubeSat Progarm, Cal Poly SLO, 2009.
    5. National Space Organization Website, 2012/01/12.
    < http://www.nspo.narl.org.tw/2011/tw/projects/Other/yamsat.html >
    6. Bashbush, V., “Characterization of the Internal and External Environments of the CubeSat P-POD and Test Pod,” M.S. Thesis, California Polytechnic State University, 2004.
    7. Toorian, A., “Redesign of the Poly Picosatellite Orbital Deployer for the Dnepr Launch Vehicle,” M.S. Thesis, California Polytechnic State University, 2007.
    8. Wilke, P. S. & Johnson, C. D., “Whole-Spacecraft Passive Launch Isolation,” Journal of Spacecraft and Rockets, Vol. 35, No. 5, 1998, pp. 690–694.
    9. Liu, L. K. & Zheng, G. T., “Parameter analysis of PAF for whole-spacecraft vibration isolation,” Aerospace Science and Technology, 2007, pp. 464–472.
    10. Chakka, V. et al., "Modeling and reduction of shocks on electronic components within a projectile," International Journal of Impact Engineering, 2008, pp. 1326–1338.
    11. “ISL.ISILaunch.EL.PSLV - Environment Levels,” V. 1.4, ISILaunch Services, 2010.
    12. Ewins, D. J., "Modal Testing: Theory and Practice," Research Studies Press Limited, England, 1984.
    13. He, J., & Fu, Z.-F., "Modal Analysis," 2001.
    14. McConnell, K. G., "Vibration Testing: Theory and Practice," John Wiley & Sons, Inc. New York, 1995.
    15. 王栢村,「實驗模態分析」,屏東科技大學課程講義,2000。
    16. Brown, D. L., Allemang, R.J., Zimmerman, R. J., and Mergeay, M., “Parameter Estimation Techniques for Modal Analysis,” SAE Technical Paper 790221, 1979. doi:10.4271/790221.
    17. Kennedy, C. C. and Pancu, C.D.P., “Use of Vectors in Vibration Measurement and Analysis.” Journal of the Aeronautical Sciences, Vol.14, No.11, pp. 603–625, 1947.
    18. Klosterman, A., “On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics,” Ph. D. Dissertation, University of Cincinnati, Mechanical Engineering Department, pp.184, 1971.
    19. Richardson, M. H. & Formenti, D. L., “Parameter Estimation from Frequency Response Measurements Using Rational Fraction Polynomials,” Proceedings of the 1st International Modal Analysis Conference, 1982.
    20. Richardson, M. H. & Formenti, D. L., “Global Curve Fitting of Frequency Response Measurements using the Rational Fraction Polynomial Method,” Proceedings of the 3rd International Modal Analysis Conference, 1985.
    21. Richardson, M. H., “Global Frequency and Damping Estimates from Frequency Response Measurement,” Proceedings of the 4th International Modal Analysis Conference, 1986.
    22. 羅鴻生, “凝膠棒衝擊壓克力平板之動態反應研究”, 國立成功大學航空太空工程研究所博士論文, 1996.
    23. Chopra, A. K., “Dynamics of Structure: Theory and Application to Earthquake Engineering,” Prentice Hall, New Jersey, 2007.
    24. Alexander, J. E., “Shock Response Spectrum – A Primer,” Proceedings of the 27th International Modal Analysis Conference, 2009.
    25. Jiří TŮMA and Petr Kočí, “Calculation of Shock Response Spectrum”, Colloquium Dynamics of Machines, 2009.
    26. 黃俊諺, “應用衝擊響應頻譜預測方法於微衛星結構縮小模型受動態衝擊之研究,” 國立成功大學航空太空工程研究所碩士論文, 2010.
    27. Friswell, M. I. and Mottershead, J.E., “Finite Element Model Updating in Structure Dynamics,” Kluwer Academic Publishers, New York, 1995.
    28. Ramsey, K. A., “Experimental modal analysis, structural modifications and FEM analysis on a desktop computer,” Proceedings of the 1st International Modal Analysis Conference, 1982.
    29. Avitabile, P., “Twenty Years of Structural Dynamic Modification – A Review,” Sound and Vibration, January, pp. 14-25, 2003.
    30. Schwarz, B., Richardson, M., Formenti, D. L., “FEA Model Updating Using SDM,” Proceedings of the 25th International Modal Analysis Conference, 2007.
    31. 陳家誠, “掃描機結構的模態量測及振動抑制研究,” 國立成功大學航空太空工程研究所碩士論文, 1999.
    32. “PC/104 Specification,” V. 2.4, PC/104 Embedded Consortium, 2001.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE