簡易檢索 / 詳目顯示

研究生: 劉偉新
Liu, Wei-Xin
論文名稱: 改善化學氣相沉積室之流場
Improving the Flow Field of a CVD Chamber
指導教授: 周榮華
Jhou, Rong-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 83
中文關鍵詞: 設備結構化學氣相沉積流場改善
外文關鍵詞: air inlet, chemical vapor deposition, flow field improvement
相關次數: 點閱:87下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體產業中,維修保養這部分尤為重要,他關係到製程是否能依照需求正常執行,以及晶圓的表面加工精密程度是否有達到標準,有了以上的這些,才能確保在每次的產出後 , 都能保有其相當水準的良率 , 而保養維修的成本支出是一筆可觀的費用 , 小則數千 , 動則上萬 ,因此會對該部件進行評估 , 盡可能地達到其壽命 , 若是因意外或是人為疏失造成損壞 , 那必定是得做更換 , 考慮到成本問題 , 還在開發中的製程機台結構設計便與後續的維護保養次數與妥善率相關聯 , 當然製程上對於需求的參數調整 , 這也是相當中要的一環 , 本研究室以設備結構上改善為出發點去做研究 , 因此製程上相關聯的部分較少提及 ;一個好的結構設計能夠為後續帶來龐大的收益 , 例如 : 良好的產品妥善率 ,製程參數的調校效率 ,後續維護保養的成本支出較其他機台少 …等 , 除此之外,也能從舊有機台上做結構修整以達到製程需求與保養成本支出減少。
    本研究以化學氣相沉積的設備結構上做修整,調整的參數由進氣口的結構開始,在進氣結中增加倒流條,接著調整出氣口的石英孔距,後續是減少進氣結構的整體體積,最後由以上的三點合併到同一模擬中,藉此觀察內部的流場改善是否能因共同加入這些條件而能降低絮流造成內部結構易形成髒污的機率。
    關鍵字:設備結構、化學氣相沉積、流場改善。

    In this study, the structure of the chemical vapor deposition chamber is modified numerically. The adjusted parameters were the structure of the air inlet by adding a flow bar in the air inlet junction, increasing the release hole, reducing the volume of the intake structure, and increasing the diameter of release hole. Their effects were numerically evaluated to check whether the improvement of the internal flow field can reduce the flow recirculation which easily leads structures being dirty. Thus, the frequency of maintenance can be reduced.

    Keywords: air inlet, chemical vapor deposition, flow field improvement.

    摘要III 英文摘要IV 目錄VII 圖目錄X 第一章緒論1 1.1 前言1 1.2 研究動機2 1.3 論文架構3 第二章理論基礎4 2.1 低壓化學氣相沉積技術介紹4 2.1.1沉積原理4 2.1.2 反應步驟5 2.2低壓化學氣相沉積的優缺點6 2.3 紊流強度7 2.4 紊流的產生與髒污與湍流強度的關係7 第三章實驗方法與步驟8 3.1ANSYS軟體簡介8 3.2反應室內部流場分析8 3.2.1 進氣結構與反應室建模8 3.2.2 反應室內部建模9 3.2.3 有限元素網格9 3.2.4 紊流模型介紹10 3.3 假設方式10 3.3.1使用方程式11 3.3.2 假設條件11 3.3.3 模擬模型介紹12 第四章結果與討論18 4.1 內部流場模擬探討18 4.2 原結構與加入四種條件相比較18 4.2.1 原結構流場剖面圖與紊流強度點位置圖18 4.2.2 原結構未做任何改變19 4.2.3 增加導流條21 4.2.4 增加釋放孔24 4.2.5 減少體積27 4.2.6 加大釋放孔徑30 4.2.7 紊流強度比較32 4.3進氣口改由側邊進氣與加入四種條件相比較36 4.3.1 側邊進氣流場剖面圖與紊流強度點位置圖36 4.3.2 側邊進氣未做任何改變37 4.3.3 增加導流條40 4.3.4 增加釋放孔43 4.3.5 減少體積45 4.3.6 加大釋放孔徑48 4.3.7 紊流強度比較51 4.4 進氣口改由底部進氣與加入四種條件相比較54 4.4.1 底部進氣流場剖面圖與紊流強度點位置圖54 4.4.2 底部進氣未做任何改變55 4.4.3 增加導流條58 4.4.4 增加釋放孔61 4.4.5 減少體積63 4.4.6 加大釋放孔徑66 4.4.7 紊流強度比較69 4.5 模擬結果比較與討論73 4.5.1 模擬結果73 4.6 與實際情況相比74 4.6.1 實際情況174 4.6.2 實際情況276 4.6.3 實際情況378 第5章結論與建議80 5.1 結論80 5.2 建議80 參考文獻81

    1.Jianping Li , Mingxi Zhao , Yongsheng Liu , Nan Chai , Fang Ye , Hailong Qin , Laifei Cheng , Litong Zhang ., Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures. Materials (Basel), 2017. 10(6).-pp
    2.Megat Abdul Hedei, P.H., Z. Hassan, and H.J. Quah, Growth of polycrystalline gallium oxide films in stagnant oxygen stream ambient. Journal of Materials Research and Technology, 2022. 16: pp. 139-151.
    3.K. Yan, L. Fu, H. Peng and Z. Liu., Designed CVD growth of graphene via process engineering. Acc Chem Res, 2013. 46(10): pp. 2263-74.
    4.M. Zhu, S. Achache, M. Emo, A. Borroto Ramírez, J.-F. Pierson and F. Sanchette., Influence of the nucleation surface on the growth of epitaxial Al2O3 thermal CVD films deposited on cemented carbides. Materials & Design, 2022. 216: pp. 110601.
    5.G. Palasantzas, B. Ilge, J. de Nijs and L. J. Geerligs., Diffusion, nucleation and annealing of Co on the H-passivated Si(100) surface. Surface Science, 1998. 412-413: pp. 509-517.
    6.M. Tsuda, M. Hata, E.-i. Araki and S. Oikawa., Adatom migrations and nucleations on reconstructed (001) surfaces I. Si. Applied Surface Science, 1996. 107: pp. 18-24.
    7.Xiangwei Yin, Gangtao Liang, Vapor condensation heat transfer on two-tier hierarchical microstructured surface. International Journal of Multiphase Flow, 2023. 163: pp. 104430.
    8.ViggoTvergaard., Nucleation from a cluster of inclusions, leading to void coalescense. International Journal of Mechanical Sciences, 2017. 133: pp. 631-638.
    9.A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J. P. Bergman., High temperature CVD growth of SiC. Materials Science and Engineering: B, 1999. 61-62: pp. 113-120.
    10.J. Pan, W. Wei, Z. Gong and Y. Cui., Effect of overlayer–substrate interaction on the coalescence behaviors of in-plane graphene/hexagonal boron nitride heterostructures. Carbon, 2021. 177: pp. 19-25.
    11.Q. Li, C. Zhang, W. Lin, Z. Huang, L. Zhang, H. L., Controllable seeding of single crystal graphene islands from graphene oxide flakes. Carbon, 2014. 79: pp. 406-412.
    12.S. E. Saddow, M. S. Mazzola, S. V. Rendakova and V. A. Dmitriev., Silicon carbide CVD homoepitaxy on wafers with reduced micropipe density. Materials Science and Engineering: B, 1999. 61-62: p. 158-160.
    13.Tianle Xie , Licai Fu , Baolong Gao , Jiajun Zhu, Wulin Yang , Deyi Li , Lingping Zhou ., The crystallization character of W-Cu thin films at the early stage of deposition. Thin Solid Films, 2019. 690: pp. 137555.
    14.VenkataA.S. Kandadai , Venkataramana Gadhamshetty , Bharat K. Jasthi, Effect of buffer layer and substrate growth temperature on the microstructural evolution of hexagonal boron nitride thin films. Surface and Coatings Technology, 2022. 447: pp. 128805.
    15.Kang Guan , Qingfeng Zeng , Yongsheng Liu , Xin'gang Luan , Zhenya Lu , Jianqing Wu., A multiscale model for CVD growth of silicon carbide. Computational Materials Science, 2021. 196: pp. 110512.
    16.Tillack, B. and J. Murota, 6 - Silicon–germanium (SiGe) crystal growth using chemical vapor deposition, in Silicon–Germanium (SiGe) Nanostructures, Y. Shiraki and N. Usami, Editors. 2011, Woodhead Publishing. pp. 117-146.
    17.Yoshio Ohshita , Atsushi Ogura , Akiko Hoshino , Toshie Suzuki , Shigeki Hiiro , Hideaki Machida., Effects of deposition conditions on step-coverage quality in low-pressure chemical vapor deposition of HfO2. Journal of Crystal Growth, 2002. 235(1): pp. 365-370.
    18.V. Yokaribas, S. Wagner, D. S. Schneider, P. Friebertshäuser, M. C. Lemme and C. P. Fritzen., Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities. Sensors (Basel), 2017. 17(12).
    19.Grzelak, J. and Z. Wierciński, Influence of Freestream Turbulence Intensity on Bypass Transition Parameters in a Boundary Layer. Journal of Fluids Engineering, 2017. 139(5)-pp.
    20.Ming Li , Qiusheng Li , Haoyun Shi , Mingshui Li., Effects of free-stream turbulence on the near wake flow and aerodynamic forces of a square cylinder. Journal of Fluids and Structures, 2022. 114: pp. 103748.
    21.Van Santen, H., C.R. Kleijn, and H.E.A. Van Den Akker, On turbulent flows in cold-wall CVD reactors. Journal of Crystal Growth, 2000. 212(1): pp. 299-310.
    22.R. S. Sharma, M. Gong, S. Azadi, A. Gans, P. Gondret and A. Sauret., Erosion of cohesive grains by an impinging turbulent jet. Physical Review Fluids, 2022. 7(7): pp. 074303.
    23.Sawada, Y., Conversion time to heat of the vortices injected only initially is much longer than the ones in a well-developed equilibrium turbulence: A possible relevance of the super-tsunami caused by the 3.11 earthquake off the Pacific coast of Tohoku to the appearance of a prominent SST anomaly in the northern pacific ocean in the summer of 2011. Physica A: Statistical Mechanics and its Applications, 2018. 506: pp. 816-827.
    24.JeongJu Kim , Ho-Seong Sohn , Ho Seop Song , Ju Hyun Im , Hee Koo Moon , Hyung Hee Cho., Effect of profiled endwall on heat transfer under different turbulence intensitie. International Communications in Heat and Mass Transfer, 2022. 133: pp. 105935.
    25.An, K. and J.C.H. Fung, An improved SST k−ω model for pollutant dispersion simulations within an isothermal boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 179: pp. 369-384.
    26.S. M. Aftab, A. S. Mohd Rafie, N. A. Razak and K. A. Ahmad., Turbulence Model Selection for Low Reynolds Number Flows. PLoS One, 2016. 11(4): pp. e0153755.
    27.Yassine Ahmimache , Matthieu Fénot , Frédéric Plourde , Laurent Descamps., Heat transfer and flow velocity study of a row of jets emerging from a perforated pipe at a low Reynolds number. International Journal of Heat and Mass Transfer, 2022. 183: pp. 122067.
    28.Y. Qiang, L. Wei, X. Luo, H. Jian, W. Wang and F. Li., Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid. Entropy (Basel), 2018. 20(10).
    29.Kerr, T. and A. Delgado, Optically observed turbulence in thrust collars at low critical Reynolds number with numerical predictions. Tribology International, 2023. 179: pp. 108107.
    30.Y. Zhang, Z. Zhou, K. Wang and X. Li., Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers. Applied Sciences, 2020. 10(5): p. 1706.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE