| 研究生: |
蔣曉薇 Chiang, Hsiao-wei |
|---|---|
| 論文名稱: |
穩定孤立電子對在化學鍵結之影響:去氧核醣核酸鹼基對及鹵化甲烷 Stabilization of Lone Pairs Electron in H-bonding of DNA Base Pairs and Halogen-Substituted Methanes |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 重新混成現象 、超共軛現象 、鹵化甲烷 、去氧核醣核酸鹼基對 |
| 外文關鍵詞: | halogenated methanes, hyperconjugation, rehybridization, DNA base pairs |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉著密度泛函理論的研究,可發現黃嘌呤二聚物(X2)具有六種可能的結構。透過自然鍵性軌域的計算,可獲得超共軛的未定域化能量,而這個能量大小可作為判斷此六個嘌呤二聚物(X2)的相對穩定性。這些二聚物(X2)的穩定性主要是靠穩定酮基上氧之孤對電子的能力來決定,也就是氧上的孤對電子到氮氫鍵的反鍵結軌域間之超共軛未定域化的現象。除此之外,氮原子的重新混成現象也可用來驗證這些二聚物的氫鍵,但是這個混成現象會被超共軛效應所超越。
在氟取代的甲烷系統中,隨著氟取代數目的增加導致碳氫鍵中碳的混成軌域的s-軌域特徵也會增加。然而,這裡的重新混成效應的影響反而大於負超共軛效應的影響,而成為決定碳氫鍵的強度的主要因素。超共軛效應的削弱是可以被理解的,因為氟原子上的孤對電子主要是由碳氟鍵的負超共軛現象來穩定,相對來說碳氫鍵的負超共軛現象會減少,同樣地在氯取代和溴取代的甲烷中可以觀察到上述的現象。而對於單取代的鹵化甲烷如氟化甲烷、氯化甲烷以及溴化甲烷,其碳氫鍵長是由超共軛現象來決定,此現象在去氧核醣核酸中的鹼基對之發現相同。
Six possible conformations of Xanthine dimers (X2) has been found by density functional theory (DFT) studies. The relative stabilities of the six X2 dimers are determined by the magnitudes of hyperconjugative delocalization energies, which have been obtained by the natural bond orbital (NBO) calculations. The dimers’s stabilities are dominated by the ability to stabilize the lone-pair electrons on the carbonyl oxygen, via hyperconjugative delocalization from the oxygen’s lone-pair to the NH antibonding orbital, n*NH. The rehybridization of the N-atom can be verified in these H-bonding but its effects are outweighed by the hyperconjugation effects.
In the fluorinated methanes, increase of the degree of fluorine substitution leads to increasing s-character of the carbon’s hybrid orbital in forming the remained C-H bond(s). This rehybridization effect outweighs the negative hyperconjugation in determination the strengths of C-H bond(s). The weakened hyperconjugation effect is understood since the lone-paired electrons on the F-atom(s) are predominantly stabilized by the negative hyperconjugation with the C-F fragments, which in return reduces their tendency of negative hyperconjugation interaction with the C-H bond(s). The same observation has been found for the chlorine and bromine analogues. For the mono-halogenation methanes, CH3X (X=F, Cl, Br), the CH bond lengths are dominated by the hyperconjugation effects as found in DNA base pairs.
1. (a) Kuan-Hua Wang ( 2006 ) “Theoretical Studies of Relative H-Bonding
Strengths and Aromatic Character in Pairing of Nucleobases (Nucleobases = Xanthine, Thymine, Hypoxanthine and Cytosine)”, National Cheng Kung University.
(b) Chun-hung Li ( 2007 ) “Theoretical Characterizations of Relative
H-Bonding Strengths and Aromaticities in Nucleobases (Xanthine, Thymine) Pairing:A Dynamics Study”, National Cheng Kung University.
(c) Wei-shan Chang ( 2006 ) “Theoretical Studies of Effects of Hydrogen Bonding on the Acidity of Abnormal Bases”, National Cheng Kung University.
2. (a) Hong-Song Lin ( 2003 ) “Studies of Carbon-Halogen Bonds in Some CFC、HCFC、HFC and Halon Compounds by Molecular Calculations”, National Cheng Kung University.
(b) Yoan-Ming Liao ( 2001 ) “Studies on the Synthesis of Heterocyclic Compounds with 1,3,4-Oxadiazole”, National Cheng Kung University.
3. Bent, H. A. Chem. Rev. 1961, 61, 275-311.
4. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b) Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566. (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855. (f) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (g) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
5. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581-3594.
6. Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738.
7. Kow, Y. W. Free Radical Biol. Med. 2002, 33, 886-893.
8. Brockway, L. O. J. Phys. Chem. 1937, 41, 185.
9. Schleyer, P. v. R. and Kos, A. J. Tetrahedron 1983, 39, 1141.
10. Schleyer, P. v. R.; Jemmis, E. D. and Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.
11. (a) Reed , A. E. and Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362; (b) Reed , A. E. and Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434; (c) Salzner, U. and Schleyer, P. v. R. Chem. Phys. Lett. 1992, 190, 401.
12. Friedman, D. S.; Francl, M. M. and Allen, L. C. Tetrahedron 1985, 41, 499.
13. Dixon, D. A.; Fukunaga, T. and Smart, B. E. J. Am. Chem. Soc. 1986, 108, 4027.
14. Fujita, M.; Suzuki, M.; Ogata, K. and Ogura, K. Tetrahedron Lett. 1991, 32, 1463.
15. (a) Pross, A.; Radom, L. and Riggs, N. V. J. Am. Chem. Soc. 1980,
102, 2253; (b) Pross, A.; DeFrees, D. J.; Levi, B. A.; Pollack, S. K.;
Radom, L. and Hehre, W. J. J. O. Chem. 1981, 46, 1693.
16. Wiberg, K. B. and Rablen, P. R. J. Am. Chem. Soc. 1993, 115, 614.
17. Lodwin, P. O. Phys. Rev. 1955, 97, 1474.
18. Bickelhaupt, F. M.; Baerends, E. J. In Rev. Comput. Chem.; Lipkowitz, K. B.; Boyd, D. B., Eds.; Wiley-VCH: New York 2000, 15, 1-86.
19. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073.
20. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends,
E.J.Chem. Eur. J. 1999, 5, 3581-3594.
21. (a) Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248-255; (b) Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194-2197; Angew. Chem. Int. Ed. 2002, 41, 2092-2095.
22. Fonseca Guerra, C.; Baerends, E. J.; Bickelhaupt, F. M. Crystal Growth & Design 2002, 2, 239-245.
23. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
24. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b) Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566; (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.
25. (a) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
26. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973-5987.
27. (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253-4264; (b) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10607-10612; (c) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784-1789.
28. (a) Bent, H. A. Chem. Rev. 1961, 61, 275-311; (b) Lemke, F. R.; Galat, K. J.; Youngs, W. J. Organometallics 1999, 18, 1419-1429; (c) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648-3659; (d) Palmer, M. H. J. Mol. Struct. 1997, 405, 179-191; (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 193-205; (f) Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem. 1996, 35, 2097-2099; (g) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201-4209; (h) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061-1073; (i) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981-1988; (j) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 234, 247-267; (k) Kaupp, M. Chem. Eur. J. 1999, 5, 3631-3643.
29. (a) Lewis, J. P.; Sankey, O. F. Biophys. J. 1995, 69, 1068; (b) Kong, Y. S.; Jhon, M. S. P. O. Löwdin, Int. J. Quantum. Chem. Symp. QB 1987, 14, 189; (c) Nagata, C.; Aida, M. J. Mol. Struct. 1988, 179, 451; (d) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493; (e) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965; (f) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996, 14, 117; (g) Sponer, J.; Hobza, P.; Leszczynski, J.; in Computational Chemistry. Reviews of Current Trends (Ed.: J. Leszczynski), World Scientific Publisher, Singapore, 1996, 185-218; (h) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574; (i) Brameld, K.; Dasgupta, S.; W. A. Goddard III, J. Phys. Chem. B 1997, 101, 4851; (j) Meyer, M.; Sühnel, J. J. Biomol. Struct. Dyn. 1997, 15, 619; (k) Santamaria, R.; VaÂzquez, A. J. Comp. Chem. 1994, 15, 981; (l) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159.
30. (a) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391; (b) Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. in Theoretical Treatment of Hydrogen Bonding (Ed.: D. Hadzi), Wiley, New York 1997; (c) Sirois, S. ; Proynov, E. I. ; Nguyen, D. T. ; Salahub, D. R. J. Chem. Phys. 1997, 107, 6770; (d) Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. 1998, 102, 3782; (e) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089; (f) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837; (g) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793; (h) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705; (i) Florian, J.; Johnson, B. G. J. Phys. Chem. 1995, 99, 5899; (j) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1995, 99, 2717; (k) Civalleri, B.; Garrone, E.; Ugliengo, P. J. Mol. Struct. 1997, 419, 227; (l) Lozynski, M.; Rusinska-Roszak, D.; Mack, H.-G. J. Phys. Chem. 1998, 102, 2899; (m) Chandra, A. K.; Nguyen, M. Chem. Phys. 1998, 232, 299; (n) Paizs, B.; Suhai, S. J. Comp. Chem. 1998, 19, 575; (o) McAllister, M. A. J. Mol. Struct. 1998, 427, 39; (p) Pan, Y. P.; McAllister, M. A. J. Mol. Struct. 1998, 427, 221; (q) Gonzalez, L.; Mo, O.; Yanez, M. J. Comp. Chem. 1997, 18, 1124.
31. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 1999, 111, 3120; Angew. Chem. Int. Ed. 1999, 38, 2942.
32. (a) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1977, 99, 1316;
(b) Yamabe, S.; Morokuma, K. J. Am. Chem. Soc. 1975, 97, 4458;(c) Morokuma, K. Acc. Chem. Res. 1977, 10, 294.
33. (a) Wheland, G. W. J. Chem. Phys. 1934, 2, 474-481; (b) Cramer, C. J. In Encyclopedia of Computational Chemistry; Schelyer, P. v. R., Ed.; John Wiley & Sons: Berlin, 1998; p.1