| 研究生: |
任庭鋒 Ren, Ting-Feng |
|---|---|
| 論文名稱: |
晶格波茲曼模擬微結構反應器流場之研究 Investigations for Micro-reactor Flow Using the Lattice Boltzmann Method |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 微反應器 、晶格波茲曼法 、多孔性材質 、化學反應率 |
| 外文關鍵詞: | Lattice Boltzmann Method, Porous Media, Micro Reactor |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年裡,晶格波茲曼方法(Lattice Boltzmann Method,LBM)已發展成為相當重要的一項研究工具。在本文的研究中,我們使用晶格波茲曼方法來計算模擬分析在微管道裡微陣列反應器的反應效率,利用加熱方式使多孔性的固體結構與流體物質發生反應,以生成我們所需要的產物,達成微陣列反應器的目的。我們針對管道中熱源位置的不同設計了兩種模型,並分析多孔性阻擋塊其中細部的流場與溫度場之間相關的物理現象,以達到在多孔性結構中真實孔隙尺度(pore scale)以及滿足非連續體(continum)的要求。接著,進而使用化學反應律(Arrhenius Law)來建構一個簡單的化學反應估算工具,依多孔性結構的反應比以及反應範圍所佔阻擋塊的比例多寡,來評估化學反應效率。模擬結果發現,當熱源在阻擋塊下方時,在低的高寬比和低雷諾數時,阻擋塊內反應比達50%的區域佔總體阻擋塊的比例最高;而當熱源在阻擋塊前方時,以高的高寬比和高雷諾數有較好的反應效率。
In the last decade, Lattice Boltzmann method, an useful and powerful tool for many studies, has been developed. In this present study, the reaction efficiency of a micro reactor in a micro-channel is analyzed. Solid porous structure reacts with the fluid by heating to produce the desired product. For the location of the heat source in the micro-channel, we design two different kinds of model to analyze the phenomenon between flow field and temperature field in the porous block in detail. In order to satisfy the pore scale in the porous structure and non-continum condition, the Lattice Boltzmann method is a suitable tool for simulation. A simple and convenient model to evaluate the efficiency of chemical reaction is proposed. Finally, we present the optimal reaction results for micro reactor using this simple model based on the present investigation.
1. M. Fay, R. Dhamrat and J. L. Ellzey, “EFFECT OF POROUS REACTOR DESIGN ON CONVERSION OF METHANE TO HYDROGEN”, Combustion Science and Technology, 177: 2171-2189, 2005
2. E. A. Salganskii, V. P. Fursov, S. V. Glazov, M. V. SalgansKaya and G.
B. Manelis, “Model of Vapor-Air Gasification of a Solid Fuel in a
Filtration Mode”, Combustion, Explosion, and Shock Wave,
42(1):55-62, 2006
3. O. Dardis and J. McCloskey, “Lattice Boltzmann scheme with
real solid density for the simulation of flow in porous media”, Physical
Review E, 57(4):4834-4837, 1998
4. M. A. A. Spaid and F. R. Phelan, “Lattice Boltzmann
method for modeling microscale flow in fibrous porous media”,
Physics of Fluids, 9(9):2468-2473, 1997
5. B. Alazmi and K. Vafai, “Analysis of fluid flow and heat transfer
interfacial conditions between a porous mediim and a fluid layer”,
International Journal of Heat and Mass Transfer, 40:1735-1749, 2001
6. N. S. Martys, “Improved approximation of the Brinkman equation
using a lattice Boltzmann method”, Physics of Fluids, 13(6):1807-1809, 2001
7. Z. Guo and T. S. Zhao, “Lattice Boltzmann model for
incompressible flows throuth porous media”, Physical Review E,
66:036304_1-036304_9
8. B. Goyeau, D. Lhuillier, D. Gobin and M. G. Velarde, “Momentum
transport at a fluid-porous interface”, International Journal of Heat and
Mass Transfer, 46:4071-4081, 2003
9. W. S. Fu, H. C. Huang and W. Y. Liou, “Thermal
enhancement un laminar channel flow with a porous block”,
International Journal of Heat and Mass Transfer,
39(10):2165-2175,1996
10. J. W. Paek, B. H. Kang and J. M. Hyun, “Transient cool-down of a
porous medium in pulsating flow”, International Journal of Heat and
Mass Transfer, 42:3523-3527, 1999
11. S. J. Kim, D. Kim and D. Y. Lee, “On the local thermal equilibrium in
microchannel heat sinks”, International Journal of Heat and Mass
Transfer, 43:1735-1748
12. P. X. Jiang, M. H. Fan, G. S. Si and Z. P. Ren,
“Thermal-hydraulic performance of small scale micro-channel and
porous-media heat-exchangers”, International Journal of Heat and
Mass Transfer, 44:1039-1051, 2001
13. K. H. Ko and N. K. Anand, “Use of porous baffles to enhance
heat transfer in a rectangular channel”, International Journal of Heat and Mass Transfer, 46:4191-1499, 2003
14. A. D’Orazio and S. Succi, “Simulating two-dimensional
thermal channel flows by means of a lattice Boltzmann method with
new boundary conditions”, Future Generation Computer System,
20:935-944, 2004
15. C. K. Chen, T. S. Yen and Y. T. Yang, “Lattice
Boltzmann method simulation of backward-facing step on convective
heat transfer with field synergy principle”, 49:1195-1204, 2006
16. N. Cao, S. Chen, S. Jin and D. Martinez, “Physical
symmetry and lattice symmetry in the lattice Boltzmann method”,
Physical Review E, 55(1):R21-R24, 1997
17. X. He and L. S. Luo, “Theory of the lattice Boltzmann method:
From the Boltzmann equation to the lattice Boltzmann
equation”,Physical Review E , 56(6):6811-6817, 1997
18. J. D. Sterling and S. Chen, “Stability Analysis of Lattice
Boltzmann Methods”, Journal of Computational Physics,
132(0016):196-206, 1996
19. D. Raabe, “Overview of the lattice Boltzmann method for nano- and
microscale fluid dynamics in materials science and engineering”,
Modeling and Simulation in Materials Science and Engineering,
12:R13-R46, 2004
20 S. Succi, “The lattice Boltzmann equation for fluid dynamics and
beyond”, Clarendon Press, Oxford, 2001
21. S. Ergun, “Fluid flow through packed columns”, Chem. Engng.
Progress, 48:89-94, 1952