簡易檢索 / 詳目顯示

研究生: 任庭鋒
Ren, Ting-Feng
論文名稱: 晶格波茲曼模擬微結構反應器流場之研究
Investigations for Micro-reactor Flow Using the Lattice Boltzmann Method
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 微反應器晶格波茲曼法多孔性材質化學反應率
外文關鍵詞: Lattice Boltzmann Method, Porous Media, Micro Reactor
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年裡,晶格波茲曼方法(Lattice Boltzmann Method,LBM)已發展成為相當重要的一項研究工具。在本文的研究中,我們使用晶格波茲曼方法來計算模擬分析在微管道裡微陣列反應器的反應效率,利用加熱方式使多孔性的固體結構與流體物質發生反應,以生成我們所需要的產物,達成微陣列反應器的目的。我們針對管道中熱源位置的不同設計了兩種模型,並分析多孔性阻擋塊其中細部的流場與溫度場之間相關的物理現象,以達到在多孔性結構中真實孔隙尺度(pore scale)以及滿足非連續體(continum)的要求。接著,進而使用化學反應律(Arrhenius Law)來建構一個簡單的化學反應估算工具,依多孔性結構的反應比以及反應範圍所佔阻擋塊的比例多寡,來評估化學反應效率。模擬結果發現,當熱源在阻擋塊下方時,在低的高寬比和低雷諾數時,阻擋塊內反應比達50%的區域佔總體阻擋塊的比例最高;而當熱源在阻擋塊前方時,以高的高寬比和高雷諾數有較好的反應效率。

    In the last decade, Lattice Boltzmann method, an useful and powerful tool for many studies, has been developed. In this present study, the reaction efficiency of a micro reactor in a micro-channel is analyzed. Solid porous structure reacts with the fluid by heating to produce the desired product. For the location of the heat source in the micro-channel, we design two different kinds of model to analyze the phenomenon between flow field and temperature field in the porous block in detail. In order to satisfy the pore scale in the porous structure and non-continum condition, the Lattice Boltzmann method is a suitable tool for simulation. A simple and convenient model to evaluate the efficiency of chemical reaction is proposed. Finally, we present the optimal reaction results for micro reactor using this simple model based on the present investigation.

    中文摘要................................................I Abstract...............................................II 誌 謝................................................III 目 錄.................................................IV 表目錄.................................................VI 圖目錄................................................VII 符號說明...............................................IX 第一章 序論.............................................1 1-1 研究背景與動機 ..................................... 1 1-2 文獻回顧............................................3 1-2.1 有關多孔性材質的相關文獻..........................3 1-2.2 有關熱傳導現象的相關文獻..........................5 1-2.3 有關晶格波茲曼數值方法的相關文獻..................6 1-3 研究內容與方向......................................7 第二章 理論模式.........................................9 2-1 物理模型............................................9 2-2 晶格波茲曼法(Lattice Boltzmann Method).............11 2-2.1 關於描述流場運動行為的晶格波茲曼方法.............11 2-2.2 關於描述溫度/濃度擴散和對流的晶格波茲曼方法......16 2-3 邊界與初始條件.....................................17 2-3.1 流場初始條件設定.................................17 2-3.2 流場邊界條件設定.................................18 2-3.3 溫度場初始條件設定...............................20 2-3.4 溫度場邊界條件設定...............................21 2-4 數值方法的驗證.....................................22 第三章 成果分析........................................28 3-1 研究模型與設計 .....................................28 3-2 流場結果分析與討論.................................30 3-3 溫度場結果分析與討論...............................33 3-4 表面化學反應率結果分析與討論.......................41 第四章 結論與建議......................................46 4-1 結論...............................................46 4-2 未來展望與建議.....................................48 參考文獻...............................................50 自 述..................................................81

    1. M. Fay, R. Dhamrat and J. L. Ellzey, “EFFECT OF POROUS REACTOR DESIGN ON CONVERSION OF METHANE TO HYDROGEN”, Combustion Science and Technology, 177: 2171-2189, 2005

    2. E. A. Salganskii, V. P. Fursov, S. V. Glazov, M. V. SalgansKaya and G.
    B. Manelis, “Model of Vapor-Air Gasification of a Solid Fuel in a
    Filtration Mode”, Combustion, Explosion, and Shock Wave,
    42(1):55-62, 2006

    3. O. Dardis and J. McCloskey, “Lattice Boltzmann scheme with
    real solid density for the simulation of flow in porous media”, Physical
    Review E, 57(4):4834-4837, 1998

    4. M. A. A. Spaid and F. R. Phelan, “Lattice Boltzmann
    method for modeling microscale flow in fibrous porous media”,
    Physics of Fluids, 9(9):2468-2473, 1997

    5. B. Alazmi and K. Vafai, “Analysis of fluid flow and heat transfer
    interfacial conditions between a porous mediim and a fluid layer”,
    International Journal of Heat and Mass Transfer, 40:1735-1749, 2001

    6. N. S. Martys, “Improved approximation of the Brinkman equation
    using a lattice Boltzmann method”, Physics of Fluids, 13(6):1807-1809, 2001

    7. Z. Guo and T. S. Zhao, “Lattice Boltzmann model for
    incompressible flows throuth porous media”, Physical Review E,
    66:036304_1-036304_9

    8. B. Goyeau, D. Lhuillier, D. Gobin and M. G. Velarde, “Momentum
    transport at a fluid-porous interface”, International Journal of Heat and
    Mass Transfer, 46:4071-4081, 2003

    9. W. S. Fu, H. C. Huang and W. Y. Liou, “Thermal
    enhancement un laminar channel flow with a porous block”,
    International Journal of Heat and Mass Transfer,
    39(10):2165-2175,1996

    10. J. W. Paek, B. H. Kang and J. M. Hyun, “Transient cool-down of a
    porous medium in pulsating flow”, International Journal of Heat and
    Mass Transfer, 42:3523-3527, 1999

    11. S. J. Kim, D. Kim and D. Y. Lee, “On the local thermal equilibrium in
    microchannel heat sinks”, International Journal of Heat and Mass
    Transfer, 43:1735-1748

    12. P. X. Jiang, M. H. Fan, G. S. Si and Z. P. Ren,
    “Thermal-hydraulic performance of small scale micro-channel and
    porous-media heat-exchangers”, International Journal of Heat and
    Mass Transfer, 44:1039-1051, 2001

    13. K. H. Ko and N. K. Anand, “Use of porous baffles to enhance
    heat transfer in a rectangular channel”, International Journal of Heat and Mass Transfer, 46:4191-1499, 2003

    14. A. D’Orazio and S. Succi, “Simulating two-dimensional
    thermal channel flows by means of a lattice Boltzmann method with
    new boundary conditions”, Future Generation Computer System,
    20:935-944, 2004

    15. C. K. Chen, T. S. Yen and Y. T. Yang, “Lattice
    Boltzmann method simulation of backward-facing step on convective
    heat transfer with field synergy principle”, 49:1195-1204, 2006

    16. N. Cao, S. Chen, S. Jin and D. Martinez, “Physical
    symmetry and lattice symmetry in the lattice Boltzmann method”,
    Physical Review E, 55(1):R21-R24, 1997

    17. X. He and L. S. Luo, “Theory of the lattice Boltzmann method:
    From the Boltzmann equation to the lattice Boltzmann
    equation”,Physical Review E , 56(6):6811-6817, 1997

    18. J. D. Sterling and S. Chen, “Stability Analysis of Lattice
    Boltzmann Methods”, Journal of Computational Physics,
    132(0016):196-206, 1996

    19. D. Raabe, “Overview of the lattice Boltzmann method for nano- and
    microscale fluid dynamics in materials science and engineering”,
    Modeling and Simulation in Materials Science and Engineering,
    12:R13-R46, 2004

    20 S. Succi, “The lattice Boltzmann equation for fluid dynamics and
    beyond”, Clarendon Press, Oxford, 2001

    21. S. Ergun, “Fluid flow through packed columns”, Chem. Engng.
    Progress, 48:89-94, 1952

    下載圖示 校內:2008-07-12公開
    校外:2008-07-12公開
    QR CODE