| 研究生: |
張津瑋 Chang, Chin-Wei |
|---|---|
| 論文名稱: |
SCARA機器人最佳時間運動規劃之實現 Implementation of Time-Optimal Motion Planning for SCARA Robots |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | SCARA機器人 、路徑規劃 、Gazebo |
| 外文關鍵詞: | SCARA Robot, motion planning, Gazebo |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SCARA機器人是一種結構簡單、移動速度快、高精準度的機械手臂,在工業上廣泛被使用,本論文旨在探討SCARA機器人的最佳運動規劃,吾人以Euler-Lagrange方法建立機器人之數學動態模型,並且計算出系統的逆向運動學與Jacobian矩陣,選用的路徑如直線、圓形及不同的補間方法,再以相平面法規劃出最短時間路徑且滿足力矩限制條件,使用MATLAB軟體利用相平面法計算出路徑命令,在Linux環境中使用Gazebo進行動態模擬,建構出SCARA機器人的物理模型,並使用插件對SCARA機器人的各關節下達角度命令以觀察動態響應,最後在EPSON公司所生產的SCARA機器人上驗證所得的運動規劃之效能。
The SCARA robot is a robotic arm with simple structure, high speed, and high precision. It is widely used in industry. The aim of this thesis is to study optimal motion planning of an SCARA robot. The Euler-Lagrange method is used to derive the dynamic model of system and the inverse kinematic formula and Jacobian matrix are obtained. The chosen paths are based on the straight line, circle, and different kinds of interpolation methods. The minimum-time path is planned using the phase plane method which can meet the torque constraints, and the phase plane method is realized in MATLAB to obtain path commands. In a Linux-based environment, Gazebo is used to contruct and simulate the dynamic model of the SCARA robot. The angular command of every joint is given to the plugin of Gazebo to obtain the dynamic responses. Finally, this motion planning method is tested on an EPSON’s SCARA robot for the performance validation.
[1] Robot, Wikipedia, https://en.wikipedia.org/wiki/Robot
[2] Robotic arm, Wikipedia, https://en.wikipedia.org/wiki/Robotic_arm
[3] EPSON工業用機械手臂網站, https://www.epson.com.tw/商用系列/工業用機械手臂/四軸%28SCARA%29---LS系列/LS3/p/SCARA-LS3
[4] SCARA Robot網站, https://robogaku.jp/en/history/business/K-1978-1.html
[5] SCARA, Wikipedia, https://zh.wikipedia.org/wiki/SCARA
[6] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, Singapore, 1987.
[7] L. Piegl and W. Tiller, The NURBS Book, 2nd ed., Springer, Berlin, Germany, 1997.
[8] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd ed., McGraw-Hill, New York, 2012.
[9] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-Optimal Control of Robotic Manipulators Along Specified Paths,” The International Journal of Robotics Research, Vol. 4, No. 3, pp. 3-17, Sep. 1985.
[10] K. G. Shin and N. D. McKay, “Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints,” IEEE Transactions on Automatic Control, Vol. 30, No. 6, pp. 531-540, Jun. 1985.
[11] F. Pfeiffer and R. Johanni, “A Concept for Manipulator Trajectory Planning,” IEEE Journal of Robotics and Automation, Vol. 3, No. 2, pp. 115-123, Apr. 1987.
[12] V. V. Chembuly and H. K. Voruganti, “Trajectory Planning of Redundant Manipulators Moving along Constrained Path and Avoiding Obstacles,” Procedia Computer Science, Vol. 133, pp. 627-634, 2018.
[13] A. Valente, S. Baraldo, and E. Carpanzano “Smooth Trajectory Generation for Industrial Robots Performing High Precision Assembly Processes,” CIRP Annals - Manufacturing Technology, Vol. 66, pp. 17-20, 2017.
[14] D. Simon, “The Application of Neural Networks to Optimal Robot Trajectory Planning,” Robotics and Autonomous Systems, Vol. 11, No. 1, pp. 23-34, May 1993.
[15] D. P. Garg and M. Kumar, “Optimization Techniques Applied to Multiple Manipulators for Path Planning and Torque Minimization,” Engineering Applications of Artificial Intelligence, Vol. 15, No. 3-4, pp. 241-252, Sep. 2002.
[16] A. T. Sadiq, F. A. Raheem, and N. A. F. Abbas, “Robot Arm Path Planning Using Modified Particle Swarm Optimization Based on D* Algorithm,” Al-Khwarizmi Engineering Journal, Vol. 13, No. 3, pp. 27-37, 2017.
[17] J. S. Huang, P. F. Hu, K. Y. Wu, and M. Zeng, “Optimal Time-Jerk Trajectory Planning for Industrial Robots,” Mechanism and Machine Theory, Vol. 121, pp. 530-544, Mar. 2018.
[18] 趙冠舜,「以Linux-RTAI為基礎之雙足機器人機電整合設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年七月。
[19] 鍾東霖,「雙足機器人步態規劃與實現」,國立成功大學工程科學系碩士論文,民國一○五年七月。
[20] 蕭家豪,「以視覺為基礎之腕關節型機器人拍擊控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一○五年一月。
[21] Denavit–Hartenberg矩陣, https://www.itsfun.com.tw/D-H%E7%9F%A9%E9%99%A3/wiki-6874573-9840753
[22] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison-Wesley, New York, 1989.
[23] EPSON機械手臂LS系列型錄, https://w3.epson.com.tw/uploadfiles/brochure/LS%E7%B3%BB%E5%88%97.pdf
[24] V-Rep網站, http://www.coppeliarobotics.com/
[25] J. Srinivas, R.V. Dukkipati, and K. Ramji, Robotics: Control and Programming, Alpha Science International, Oxford, UK, 2009.
[26] Differential Motion, https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter5.pdf
[27] 陳之凱,「控制力矩陀螺致動之二維倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國一○五年七月。
[28] 貝茲曲線, Wikipedia, https://zh.wikipedia.org/wiki/%E8%B2%9D%E8%8C%B2%E6%9B%B2%E7%B7%9A
[29] B-Spline曲線, https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/
[30] Thomas algorithm, https://www.cnblogs.com/xpvincent/archive/2013/01/25/2877411.html
[31] 施慶隆, 李文猶, 機電整合控制:多軸運動設計與應用(第三版), 全華圖書股份有限公司, 新北市, 2016。
[32] 鄭詠全,「基於ROS之雙足機器人步態模擬」,國立成功大學工程科學系碩士論文,民國一○八年七月。
[33] ODE, Wikipedia, https://zh.wikipedia.org/wiki/Open_Dynamics_Engine
[34] OGRE網站, http://www.ogre3d.org/
[35] Github網站, https://github.com/
[36] Gazebo plugin, http://gazebosim.org/tutorials?tut=plugins_hello_world&cat=write_plugin