| 研究生: |
鍾詩廷 Chung, Shih-Ting |
|---|---|
| 論文名稱: |
透過田口實驗方法探討在不同參數下利用高功率脈衝磁控技術濺鍍氮化鉻鍍層於碳化鎢底材上之影響 Effect of different parameters on CrN coatings deposited on Tungsten carbide by HiPIMS using Taguchi method |
| 指導教授: |
蘇演良
Su, Yean-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 高功率脈衝磁控濺鍍技術 (HiPIMS) 、氮化鉻鍍層 、機械與磨潤 、田口實驗法 |
| 外文關鍵詞: | HiPIMS, CrN coating, Tribological property, Taguchi method |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高功率脈衝磁控濺鍍系統(HiPIMS)進行氮化鉻鍍層的製備,實驗會透過田口實驗方法(L9直交表)進行氮化鉻鍍層(CrN)的參數設計,在本次實驗中會改變四種不同的濺鍍參數(底材偏壓、脈衝時間、氮氬流量比與脈衝時間)來進行九組試片的濺鍍作業,並透過不同的實驗方法,進行C1~C9鍍層的結構、機械性質(奈米硬度與附著性等等) 的分析與探討,實驗中會使用兩種不同的對磨球(AISI 52100與Si3N4)來探討鍍層的磨潤性質(包括摩擦係數、磨耗深度與磨耗率等結果),最後再透過田口實驗方法的S/N比推論出擁有最佳磨潤性質的C10鍍層與微調鍍層參數後期望有最佳附著性的C11鍍層,並進行C10鍍層與C11鍍層的機械性質與磨潤性質的分析與整理探討。
在本實驗中,共會進行九組試片(C1~C9)的濺鍍作業,並進行兩組(C10、C11)不同鍍層參數的驗證實驗,綜合所有的結果後,會選擇一組最佳的鍍層參數進行微鑽針的濺鍍作業,並探討此鍍層可以改善未被覆鍍層之微鑽針多少的壽命。故由結果可以知道,C10鍍層具有很高的硬度(41.2 GPa)與最好的Lc1與Lc2 (81.6 N與100 N),且在與AISI 52100對磨球對磨時有很低的磨耗深度與磨耗率,代表C10鍍層可以提升底材的抗磨耗表現,所以決定將C10鍍層被覆於微鑽針上,並進行高速鑽削實驗的鑽削測試,最後發現被覆C10鍍層之微鑽針在鑽削至4000孔後,仍然保持著業界的標準,表示被覆C10鍍層的微鑽針可以至少改善未被覆鍍層之微鑽針的2倍壽命以上。
In this study, the CrN coatings were deposited on WC substrate by HiPIMS technology. There are four different parameters of substrate bias (-40 V, -60 V and -80 V), pulse current (150 A, 250 A and 350 A), N2/Ar (50/30, 40/40 and 30/50) and pulse duration (150 μs, 200 μs and 250 μs) to investigate the tribological properties. The optimal factor levels in terms of wear rate was determined by Taguchi method (L9). To sum up, according to the results of the analysis, of all the coatings, C10 coating is the best coating in this study, which has not only high hardness (41.2 GPa) and adhesion Lc (100 N) but also excellent wear resistance. In addition, C10 was chosen to deposit on micro-drills to improve the lifetime of micro-drills. In the end, it can note that C10 coated micro-drills can improve twice times lifetime comparing with uncoated micro-drills.
[1] V. Kouznetsov, K. Macák, J. M. Schneider, et al., A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology, Vol 122 (1999) p.290-293.
[2] S. Rtimi, C. Pulgarin, J. Kiwi, Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light, Coatings, Vol 7(2) (2017) p.20.
[3] J. Paulitsch, P.H. Mayrhofer, W. D. Münz, et al., Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique, Thin Solid Films, Vol 517 (2008) p.1239–1244.
[4] Q. Luo, S. Yang, K.E. Cooke, Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties, Surface and Coatings Technology, Vol 236 (2013) p.13-21.
[5] K. Bobzin, T. Brögelmann, N.C. Kruppe, et al., Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS, Surface and Coatings Technology, Vol 332 (2017) p.253-261.
[6] A. Ferrec, J. Keraudy, S. Jacq, F. Schuster, et al., Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges, Surface and Coatings Technology, Vol 250 (2014) p.52-56.
[7] H. Elmkhah, F. Attarzadeh, A.F. alhosseini, et al., Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques, Journal of Alloys and Compounds, Vol 735 (2018) p.422-429.
[8] M. Pettersson, S. Tkachenko, S. Schmidt, et al., Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements, journal of the mechanical behavior of biomedical materials, Vol 25 (2013) p.41–47.
[9] H. Decho, A. Mehner, H.W. Zoch, et al., Optimization of chromium nitride (CrNx) interlayers for hydrogenated amorphous carbon (a-C:H) film systems with respect to the corrosion protection properties by high power impulse magnetron sputtering (HiPIMS), Surface and Coatings Technology, Vol 293 (2016) p.35-41.
[10] J.A. Santiago, I. Fernández-Martínez, A. Wennberg, et al., Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching Pretreatment, Surface and Coatings Technology, Vol 349 (2018) p.787-796.
[11] J.C. Sánchez-López, S. Dominguez-Meister, T.C. Rojas, Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS, Applied Surface Science, Vol 440 (2018) p.458–466.
[12] J.A. Santiago, I. Fernández-Martínezb, T. Kozákc, et al., The influence of positive pulses on HiPIMS deposition of hard DLC coatings, Surface and Coatings Technology, Vol 358 (2019) p.43-49.
[13] 工業技術研究院-石墨材表面功能性鍍層技術https://goo.gl/Bn9L19
[14] 黃嘉宏,高功率脈衝電漿濺射技術工業應用研究II,國立清華大學,研究報告,2011。
[15] 蕭雨喬,HIPIMS鍍膜系統之特性研究-以TiN為例,國立臺北科技大學材料科學與工程研究所,碩士論文,2012。
[16] C.L. Chang, S.G. Shih, P.H. Chen, et al., Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surface and Coatings Technology, Vol 259 (2014) p.232–237.
[17] 陳柏任,以高功率脈衝磁控濺鍍法製備氮化鋯阻障層於金屬閘極金氧半結構之特性研究,亞洲大學光電與通訊學系,碩士論文,2014。
[18] 石登元,HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測,國立臺灣師範大學機電工程學系,碩士論文,2016。
[19] 蔡宸安,高功率脈衝磁控濺鍍法 (HIPIMS) 製備二氧化釩 (VO2) 熱致變色鍍層之特性研究,明志科技大學,碩士論文,2017。
[20] 何主亮,高功率脈衝磁控濺鍍磊晶生長立方晶氮化鋁於鋁金屬,逢甲大學材料科學與工程學系,碩士論文,2016。
[21] L.C. Chang, Y.Z. Zheng, Y.I. Chen, Mechanical Properties of Zr–Si–N Films Fabricated through HiPIMS/RFMS Co-Sputtering, Coatings, Vol 8 (2018) p.263-274.
[22] W.Y. Wu, M.Y. Chan, Y.H. Hsu, et al., Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering, Surface and Coatings Technology, Vol 362 (2019) p.167-175.
[23] A. Zeilinger, R. Daniel, T. Schöberl, et al., Resolving depth evolution of microstructure and hardness in sputtered CrN film, Thin Solid Films, Vol 581 (2015) p.75-79.
[24] M.C.R. Guimaraesa, B.C.N.M.d. Castilhoa, T.d.S. Nossa, et al., On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS, Surface and Coatings Technology, Vol 340 (2018) p.112-120.
[25] A.P. Ehiasarian, W.D. Münz, L. Hultman, et al., High power pulsed magnetron sputtered CrNx films, Surface and Coatings Technology, Vol 163 (2003) p.267–272.
[26] I. Milosev, H.H. Strehblow, B. Navinsek, XPS in the study of high-temperature oxidation of CrN and TiN hard coatings, Surface and Coatings Technology, Vol 74-75 (1995) p.897–902.
[27] A.L. Bandeira, R. Trentin, C. Aguzzoli, et al., Sliding wear and friction behavior of CrN-coating in ethanol and oil–ethanol mixture, Wear, Vol 301 (2013) p.786-794.
[28] L. Shan, Y.R. Zhang, Y.X. Wang, et al., Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater, Transactions of Nonferrous Metals Society of China, Vol 26 (2016) p.175-184.
[29] A. Conde, C. Navas, A.B. Cristóbal, et al., Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings, Surface and Coatings Technology, Vol 201 (2006) p.2690-2695.
[30] B. Navinsek, P. Panjan, I. Milosev, Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surface and Coatings Technology, Vol 97 (1997) p.182–191.
[31] F.J.G. Silva, R.P. Martinho, R.J.D. Alexandre, et al., Increasing the wear resistance of molds for injection of glass fiber reinforced plastics, Wear, Vol 271 (2011) p.2494– 2499.
[32] J. Paulitsch, M. Schenkel, T. Zufraß, et al., Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films, Vol 518 (2010) p.5558-5564.
[33] J. Lin, J.J. Moore, W.D. Sproul, et al., The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering, Surface and Coatings Technology, Vol 204 (2010) p.2230-2239.
[34] https://www.slideshare.net/DaleHsieh1/ss-61533659
[35] Z. Sefrou, N.E. Belkhouche, Cloud point extraction of La(III) by C13E10 non-ionic surfactant: Statistical refinement of experimental optimization by L9 Taguchi’s design, Chemical Engineering Research and Design, Vol 153 (2020) p.819–828.
[36] J.F. Lin, P. J. Wei, J.C. Pan, et al., Effect of nitrogen content at coating film and film thickness on nanohardness and Young’s modulus of hydrogenated carbon films, Diamond and Related Materials, Vol 13 (2004) p.42–53.
[37] M. Lichinchi, C. Lenardi, J. Haupt, et al., Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films, Vol 312 (1998) p.240-248.
[38] W.H. Kao, High-speed drilling performance of coated micro-drills with Zr–C:H:Nx% coatings, Wear, Vol 267 (2009) p.1068–1074.
[39] J. Lin, W.D. Sproul, J.J. Moore, et al., High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering, Surf. Coat. Technol., 205 (2011) 3326-3234.
[40] X. Fang, C. Li, L. Sun, et al., Hardness and friction coefficient of fused silica under scratching considering elastic recovery, Ceramics International, Vol 46 (2020) p.8200–8208.
[41] V. Ayhan, Ç. Çangal, İ. Cesur, et al., Optimization of the factors affecting performance and emissions in a diesel engine using biodiesel and EGR with Taguchi method, Fuel, Vol 261 (2020) 116371.
[42] R. Thirumalai, J.S. Senthilkumaar, P. Selvarani, et al., Machining characteristics of Inconel 718 under several cutting conditions based on Taguchi method, Journal of Mechanical Engineering Science, Vol 0 (0) 1-9.
[43] Z. Tan, L. Wang, Y. Xue, et al., High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering, Mater. Des., 109 (2016) 219–226.
[44] H.K. Kim, J.H. La, K.S. Kim, et al., The effects of the H/E ratio of various Cr–N interlayers on the adhesion strength of CrZrN coatings on tungsten carbide substrates, Surface and Coatings Technology, Vol 284 (2015) 230–234.
[45] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear, Vol 246 (2000) 1–11.
[46] C. Mitterer, O. Heuze, V.H. Derttinger, Substrate and coating damage by arcing during sputtering, Surface and Coatings Technology, Vol 89 (1997) 233-238.
[47] N. Meunier, P. Drogui, C. Montan´e, et al., Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate, Journal of Hazardous Materials, Vol B137 (2006) 581–590.
[48] S.H. Kim, S.W. Na, N.-E. Lee, et al., Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma, Surface and Coatings Technology, Vol 200 (2005) 2072-2079.