簡易檢索 / 詳目顯示

研究生: 黃帝榕
Huang, Di-Jung
論文名稱: Sn-xZn/ Al光伏模組接合界面組織特性與通電機制研究
A study on characteristics of interfacial microstructure and electrical current mechanism in Sn-xZn/ Al photovoltaic modules
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 65
中文關鍵詞: 鋁導帶Sn-Zn無鉛銲錫光伏模組通電機制
外文關鍵詞: Aluminum ribbon, Sn-Zn, photovoltaic module, electrical current mechanism
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Sn-Zn銲錫合金不含介金屬化合物,電導率表現優良且成本低,可適合應用於光伏模組之電子傳導。本實驗選取含Sn-30Zn、Sn-50Zn及Sn-70Zn銲錫鍍層之光伏導帶為實驗材料進行研究。有別於現今商用銅導帶,本實驗選用商用純鋁導帶,其亦具有良好導電性且成本便宜。實驗利用界面微觀組織特徵與剝離力測試評估Sn-xZn/ Al光伏模組之製程條件,並以高電流通電模擬電子作用下的微觀組織及體電阻變化,以評估工業應用性。
      實驗結果顯示光伏鋁帶微觀組織中,Sn-Zn/ Al之接合並不會產生介金屬化合物,其接合機制是利用液相Zn由Al晶界穿隧至Al基材。光伏鋁帶與銀膠回銲後,Al/solder界面組織無太大變化;而在solder/Ag會形成AgZn3。隨著回銲時間增加,Sn-30Zn及Sn-50Zn模組之AgZn3厚度變厚,而Sn-70Zn無此趨勢,原因是回銲條件下無法產生足夠液相,而殘餘銀膠原厚度皆有隨回銲時間增加而減少之趨勢。此外,本實驗選取最高剝離力之Sn-50Zn模組作為後續通電之試驗,經由72 hr兩種通電方向結果顯示,體電阻與AgZn3厚度皆增加,而由鋁方向通電模組之體電阻表現較銀方向通電模組佳,原因為銀方向通電模組在銲錫基地存在AgZn3,將提高電子傳遞路徑也縮小通電截面積。與前人研究之SAC305/ Cu光伏模組及Sn-xZn/ Cu光伏模組比較發現,初期Sn-50Zn/ Al光伏模組體電阻與其他系統相當,但是在相對較長之通電時間後,體電阻增加的幅度較少,可確定Sn-50Zn/ Al光伏模組在電流作用下具較佳穩定性。

    The interfacial microstructures, peeling force, and series resistance of photovoltaic (PV) Aluminum ribbon containing Sn-30Zn, Sn-50Zn and Sn-70Zn are investigated. After dipping, the bonding mechanism of PV ribbon was found by the solder liquid phase penetration along Al. grain boundary. After reflow, the AgZn3 formed at the solder/Ag interface which thickness would increase as reflowing time increase. After current injection, the Ag film consumed and the thickness of AgZn3 showed significantly increased. Volume resistance of both Al direction and Ag direction modules increased, however, the volume resistance of Ag direction module slightly higher than Al direction module due to AgZn3 formed in the solder matrix which caused the increasing of electron path and reducing the cross section area. After thermal aging, the results showed that at 80 oC the module was still stable. In the contrast with copper ribbon system, Sn-50Zn Aluminum ribbon system revealed more stable ability under electrical current operation.

    摘要 I Extended Abstract II 致謝 XII 目錄 XIV 圖目錄 XVI 表目錄 XIX 第一章 前言 1 第二章 文獻回顧 3 2-1 銲錫應用與無鉛化發展 3 2-2 運用於光伏導帶之無鉛銲錫 3 2-2-1 Sn-Ag與Sn-Ag-Cu合金 3 2-3 Sn-Zn合金 4 2-4 光伏導帶對太陽能模組之影響 5 2-5 接合材之界面反應 6 2-5-1 介金屬化合物之界面反應動力學 6 2-5-2 Sn-Zn合金與銀膠之界面反應 7 2-6 通電對模組的影響 7 第三章 實驗方法 15 3-1 光伏鋁帶模組製備及界面分析 15 3-1-1 光伏鋁帶製作 15 3-1-2 光伏鋁帶模組製作 15 3-1-3 光伏鋁帶及其模組的界面微觀組織分析 16 3-2 光伏鋁帶模組之剝離力測試 16 3-3 光伏鋁帶模組通電測試 17 3-3-1 通電實驗步驟及方法 17 3-3-2 通電試片之微觀組織分析 17 3-3-3 體電阻量測 18 第四章 實驗結果 24 4-1 Sn-Zn銲錫合金之微觀組織 24 4-2 光伏鋁帶微觀組織 24 4-3 光伏鋁帶模組之剝離力測試 25 4-4 光伏鋁帶模組之微觀組織 25 4-5 光伏鋁帶模組回銲與通電後之體電阻 26 4-6 Sn-50Zn光伏模組(回銲30秒)鋁方向通電之特徵組織 27 4-7 Sn-50Zn光伏模組(回銲30秒)銀方向通電之特徵結構 28 4-8 Sn-50Zn光伏模組(回銲30秒)熱處理特徵組織 28 第五章 討論 49 5-1 光伏鋁帶接合機制 49 5-2 Zn與回銲時間對界面微觀組織的影響 50 5-3 電流與熱效應對模組之影響 51 第六章 結論 59 參考文獻 60

    [1] Y. Tian, Q. M. Zhang, Z. Q. Li, “Electrical transport properties of Ag3Sn compound”, Solid State Communications, Vol. 151 (20), (2011), pp. 1496-1499.
    [2] D. R. Frear, S. N. Burchett, H. S. Morgan, J. H. Lau, eds., “The Mechamics of Solder Alloy Interconnects”, Springer, (1994), p. 60.
    [3] 林奕安,「鋅基高溫無鉛銲錫合金開發及其性質之研究」,國立成功大學材料科學及工程學系,碩士論文,民國98年,11-18頁。
    [4] P. T. Vianco, D. R. Frear, “Issues in the replacement of lead-bearing solders”, JOM, Vol. 45 (7), (1993), pp. 14-19.
    [5] A. Z. Miric and A. Grusd, “Lead-free alloys”, Soldering & Surface Mount Technology, Vol. 10 (1), (1998), pp. 19-25.
    [6] B. Trumble, “GET THE LEAD OUT”, IEEE Spectrum, (1998), pp. 55-60.
    [7] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, “Properties of lead-free solder alloys with rare earth element additions”, Materials Science and Engineering: R: Reports, Vol. 44 (1), (2004), pp. 1-44.
    [8] R. Lathrop, K. Pfluke, “Novel: approaches to benchmarking solar cell tabbing solderability”, Proceedings 26th European International Conference on Photovoltaic Solar Energy Location: Hamburg, Germany, 2011, p. 9.
    [9] K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion in Solid State and Materials Science, Vol. 5 (1), (2001), pp. 55-64.
    [10] S. L. Allen, M. R. Notis, R. R. Chromik, R. P. Vinci, “Microstructural evolution in lead-free solder alloys: Part I. Cast Sn-Ag-Cu eutectic”, Journal of Materials Research, Vol. 19 (05), (2004), pp. 1417-1424.
    [11] S. Nieland, M. Baehr, A. Boettger, A. Ostmann, H. Reichl, “Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells”, 22th European Photovoltaic Solar Energy Conference, Milan, Italy, September, (2007).
    [12] J. D. Humpston G, “Principles of soldering and brazing”, ASM International, (1993).
    [13] G. A. Lan, C. W. Yang, T. S. Lui, L. H. Chen, “Effect of Zinc Content on Microstructural Evolution and Electrification- Fusion-Induced Failure Mechanism of Sn-xZn Alloys”, Materials transactions, Vol. 52 (1), (2011), pp. 54-60.
    [14] G. Zeng, S. McDonald, K. Nogita, “Development of high-temperature solders: Review”, Microelectronics Reliability, Vol. 52 (7), (2012), pp. 1306-1322.
    [15] G. A. Lan, T. S. Lui, L. H. Chen, “The Role of Eutectic Phase and Acicular Primary Crystallized Zn Phase on Electrification-Fusion Induced Fracture of Sn-xZn Solder Alloys”, Materials Transactions, Vol.52 (11), (2011), pp. 2111-2118.
    [16] R. R. Tummala, E. J. Rymaszewski, A. G. Klopfenstein, “Microelectronics Packaging Handbook”, (1997).
    [17] K. L. Lin, L. H. Wen, T. P. Liu, “The Microstructures of the Sn-Zn-Al Solder Alloys”, Electronic Materials, Vol. 27 (3), (1998), pp. 97-105.
    [18] 翁敏航,「太陽能電池-原理、元件、材料、製程與檢測技術」,東華書局,民國99年,92頁。
    [19] A. M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, L. Felton, M. Davis, B. Atchley, T. Williams, “Soldering induced damage to thin Si solar cells and detection of cracked cells in modules”, Proceedings of the 21st European Photovoltaic Solar Energy Conference, (2006), pp. 2042-2047.
    [20] 劉培基,「錫鋅系銲錫與銀基材之界面反應」,國立成功大學國材料科學及工程學系,碩士論文,民國93年,10-25頁。
    [21] 郭窈伶,「錫鋅共晶銲錫與電鍍鎳層之界面反應」,國立成功大學材料科學及工程學系,碩士論文,民國99年,15-16頁。
    [22] K. L. Lin, C. L. Shih, “Wetting interaction between Sn-Zn-Ag solders and Cu”, Journal of Elec Materi, Vol. 32 (2), (2003), pp. 95-100.
    [23] R. Hultgren, P. Desai, D. Hawkins, M. Gleiser, K. Kelley, “Selected values of the thermodynamic properties of binary alloys”, ASM, Metals Park, (1972).
    [24] 陳欣楷,「以數據分析來研究覆晶銲點之電遷移現象」,國立中央大學化學工程與材料工程學系,碩士論文,民國96年,1-21頁。
    [25] Y. M. Hung, C. M. Chen, “Electromigration of Sn-9wt.%Zn Solder”, Journal of Elec Materi”, Vol. 37 (6), (2008), pp. 887-893.
    [26] H. Ye, C. Basaran, D. C. Hopkins, “Mechanical degradation of microelectronics solder joints under current stressing”, International Journal of Solids and Structures, Vol. 40 (26), (2003), pp. 7269-7284.
    [27] H. Ye, C. Basaran, D. C. Hopkins, D. Frear, L. Jong-Kai, “Damage mechanics of microelectronics solder joints under high current densities”, Electronic Components and Technology Conference, 2004. Proceedings. 54th, Vol. 981, (2004), pp. 988-997.
    [28] ASM. Handbook Committee, Metals handbook. nonferrous alloys and pure metals Volume 2, Vol. 2, American Society for Metals, Metals Park, Ohio, (1979).
    [29] J. Lee, K. Kim, K. Suganuma, M. Inoue, G. Izuta, “Thermal properties and phase stability of Zn-Sn and Zn-In alloys as high temperature lead-free solder”, Materials transactions, Vol. 48 (3), (2007), p. 584.
    [30] Y. L. Tsai, H. S. Wang, W. S. Hwang, “Measurements of Thermal Expansion Coefficient and Melting Ranges for Sn-9Zn-xAg Lead-free Solder Alloys”, INTERNATIONAL JOURNAL OF CAST METALS RESEARCH, Vol. 15, (2002), pp. 181-186.
    [31] B. Smetana, S. Zlá, A. Kroupa, M. Žaludová, J. Drápala, R. Burkovič, D. Petlák, “Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams”, Journal of thermal analysis and calorimetry, Vol. 110 (1), (2012), pp. 369-378.
    [32] 陳郁雯,「Sn-Zn 無鉛銲錫光伏銅帶之界面微觀組織特徵及剝離力研究」,國立成功大學材料科學及工程學系,碩士論文,民國102年。
    [33] 曾堉,「金屬基材與介金屬相在無鉛銲料中溶解現象的探討」,國立臺灣科技大學化學工程系,碩士論文,民國94年,100-112頁。
    [34] F. Haddadi, D. Strong, P. Prangnell, “Effect of Zinc Coatings on Joint Properties and Interfacial Reactions in Aluminum to Steel Ultrasonic Spot Welding”, JOM, Vol. 64 (3), (2012), pp. 407-413.
    [35] M. Movahedi, A. Kokabi, H. Madaah Hosseini, “An investigation on the soldering of Al 3003/ Zn sheets”, Materials Characterization, Vol. 60 (5), (2009), pp. 441-446.
    [36] G. Erdelyi, K. Freitag, G. Rummel, H. Mehrer, “Volume and grain boundary diffusion of implanted 113Sn in Aluminium”, Applied Physics A, Vol.53 (4), (1991), pp. 297-302.
    [37] N. Peterson, S. Rothman, “Impurity diffusion in Aluminum”, Physical Review B, Vol.1 (8), (1970), pp. 3264-3273.
    [38] 宣騰竣,「錫-鋅-銀-鋁-鎵銲錫合金之微結構與拉伸性質之研究」, 國立成功大學材料科學及工程學系,碩士論文,民國98年,10-27頁。
    [39] X. Zhang, J. Guo, J. Shang, “Abnormal polarity effect of electromigration on intermetallic compound formation in Sn–9Zn solder interconnect”, Scripta materialia, Vol. 57 (6), (2007), pp. 513-516.
    [40] P. Shewmon, “Diffusion in solids TMS”, Warrendale, PA, (1989), pp. 1194-1199.
    [41] K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, D. W. Qiu, T. L. Chou, “Microstructure and electrical mechanism of Sn-xAg-Cu PV-ribbon for solar cells”, Microelectronic Engineering, Vol.116, (2014), pp. 33-39.
    [42] K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, D. W. Qiu, T. L. Chou, “Effects of Electrical Current on Microstructure and Interface Properties of Sn-Ag-Cu/Ag Photovoltaic Ribbons”, Materials Transactions, Vol.54 (07), (2013), pp. 1155-1159.

    無法下載圖示 校內:2017-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE