簡易檢索 / 詳目顯示

研究生: 沈百淳
Shen, Bai-Chun
論文名稱: HCl對Fe2O3/SiO2載氧體於高溫化學環路燃燒之影響
Effect of Hydrogen Chloride on Fe2O3/SiO2 for High-Temperature Chemical-Looping Combustion
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 186
中文關鍵詞: 化學環路燃燒載氧體一氧化碳氫氣氯化氫
外文關鍵詞: Chemical-looping combustion, Oxygen carrier, CO, H2, HCl
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口增加及經濟快速發展,使得全球對能源需求益增,但在化石燃料蘊藏有限與全球溫室效應的危機下,未來針對能源改善與二氧化碳減量之議題已成為趨勢。化學環路燃燒系統乃傳統煤炭氣化技術之進一步研發,不僅提高能源效率,對於CO2與NOX也具有良好的控制效果。因此,本研究探討以自行製備之20% Fe2O3/SiO2、20% NiO/SiO2及20% Mn2O3/SiO2載氧體之性能及與CO/H2/HCl反應之研究。

    在高溫下,金屬載氧體於TGA及固定床反應管之循環測試,得知Fe2O3在高溫下多次再生後較能保有穩定的還原效果及高反應性,因此選定20% Fe2O3/SiO2為最適合之載氧體進行操作參數試驗。以反應管模擬固定床,當空間流速為400 mL hr-1 g-1時,Fe2O3具有較佳之利用率;當CO濃度大於40%,使得載氧體與CO之間的反應性下降;H2濃度大於15%,發現載氧體的利用率有停滯的現象,推測原因為負載20%的活性重金屬本身無法提供更多的活性位置給還原氣體。HCl參與反應對載氧體之影響,結果得知H2氣氛下添加HCl使得整體的利用率提升至近100%;而CO氣氛下HCl的加入對載氧體的利用率並無顯影響性。

    XRD圖譜發現還原後之Fe2O3載氧體產生Fe2+2SiO4,經由多次還原氧化後之載氧體,發現有SiO2˙(H2O)X的晶相。利用FTIR即時監測CO/H2/HCl反應過程中之氣相反應物及生成物的消長情形,推測可能的反應機制,且由動力研究發現,第一型衰退模式較適合用來描述此結果。

    The increasing demand for energy resources has been the concern of world due to the population growth and economic developments. However, reserves of fossil fuels have been limited and global warming crisis is increasing. Hence, the technology improvement and carbon dioxide capture for energy issues have become a trend in the future. Chemical-looping combustion (CLC), one of the energy efficiency and CO2 and NOX good control effects, is considered a promising option for power generation. In the present work, the handmade carriers of 20% Fe2O3/SiO2, 20% NiO/SiO2 and 20% Mn2O3/SiO2 oxygen will be reacted with CO/H2 in the TGA system, and then best one will be chosen to perform continuous fixed-bed reactions.

    20% Fe2O3/SiO2 oxygen carrier was investigated for amounts of cyclic reaction in the TGA system and fixed-bed reactor, and Fe2O3 showed high reactivity and great mechanical strength. Hence, Fe2O3 was chosen as a suitable oxygen carrier to conduct following operating parameters. The space velocity was 400 ml hr-1 g-1 which showed a better utilization; as the CO concentration is greater than 40%, the utilization decreasing. H2 concentration was added more than 15%, so consequently the utilization has the phenomenon of stagnation. The results were speculated that Fe2O3 oxygen carrier couldn’t provide more effective active sites, as increasing the concentration of reactant gas. The effect of Fe2O3 oxygen carrier in chlorine-containing hot coal gas showed that the overall utilization went near 100% in H2 atmosphere. On the contrary, there is no obvious influence on the presence of HCl process in CO atmosphere. It was likely that the positive influence of H2 overpowered the absorption reaction of CO.

    Several instruments were used for observing the structure change, elemental composition and crystal transformation. From the XRD patterns, it can be found that after the reduction of oxygen-carrier-produced Fe2+2SiO4; furthermore, the SiO2˙(H2O)X crystalline phase would be outputted after regeneration. To obtain more information of gas phase changing during the CO/H2/HCl reduction, we used FTIR real-time monitoring the by-products, and then conducting the possible reaction mechanism. The kinetic model for the reduction of Fe2O3 oxygen carrier with CO, H2 and HCl of experiment results, the first deactivation model is suitable to describe results.

    摘要 I Abstract II 表目錄 VIII 圖目錄 X 第一章 前言 1 1-1 研究動機 1 1-2 研究內容與架構 3 第二章 文獻回顧 5 2-1 發電系統簡介 5 2-1.1 IGCC發電簡介 5 2-1.2 CLC發電簡介 8 2-1.3 CLR發電簡介 11 2-1.4 CLH發電簡介 12 2-2 一氧化碳之特性 14 2-2.1 一氧化碳之來源 14 2-2.2 一氧化碳之性質 14 2-2.3 一氧化碳之形成機制與排放物性 17 2-3 氫氣之特性 19 2-3.1 氫氣之來源 19 2-3.2 氫氣之性質 19 2-4 氯化氫特性 21 2-4.1 氯化氫之來源 21 2-4.2 氯化氫之性質 21 2-4.3 氯化氫之危害 23 2-5 載氧體製備方式 24 2-5.1 溶膠凝膠法 24 2-5.2 機械混合法 24 2-5.3 臨濕含浸法 25 2-5.4 溶解法 26 2-5.4 共沉澱法 27 2-6 載氧體特性 28 2-7 載氧體之選擇 34 2-7.1 金屬氧化物載氧體 36 2-7.2 載體型載氧體 39 2-8 載氧體之活性衰退 42 2-9 CLC操作參數之影響 44 2-10 表面物理吸附等溫線 46 2-11 載氧體還原反應動力之探討 48 2-11.1 衰退模式 49 2-11.2 Arrhenius表示式 51 第三章 研究方法與實驗器材 52 3-1 研究方法 52 3-1.1 實驗規劃 52 3-1.2 實驗步驟與方法 54 3-2 實驗器材 56 3-2.1 實驗材料 56 3-2.2 實驗系統裝置 58 3-2.3 主要儀器原理介紹 64 3-3 預備實驗 76 3-3.1 載氧體之製備 76 3-3.2 檢量線製作及儀器校正 78 3-3.3 空白實驗 78 第四章 結果與討論 81 4-1 自製載氧體之特性分析 83 4-1.1 XRD分析 84 4-1.2 ICP-AES金屬元素分析 87 4-1.3 載氧體之TPR分析 88 4-1.4 溫度對載氧體之還原性能測試 92 4-1.5 改變還原氣體濃度之特性分析 95 4-1.6 不同載氧體還原-氧化反應之比較 99 4-2 改變操作參數對於20% Fe2O3/SiO2載氧容量影響之探討 105 4-2.1 空間流速之影響 105 4-2.2 一氧化碳濃度之影響 107 4-2.3 氫氣濃度之影響 109 4-2.4 混合還原性氣體之影響 111 4-2.5 氯化氫濃度之影響 113 4-3 氯化氫之還原-再生循環對吸收容量影響之探討 119 4-4 載氧體反應前後分析 122 4-4.1 XRD分析 122 4-4.2 SEM分析 126 4-4.3 SEM–EDS分析 130 4-4.4 Mapping分析 136 4-4.5 BET表面積與孔洞特性 147 4-4.6 XPS分析 152 4-5 HCl對20% Fe2O3/SiO2載氧體之反應機制探討 155 4-5.1 氫氣及一氧化碳對20% Fe2O3/SiO2之反應 155 4-5.2 添加HCl於CO氣氛下對20% Fe2O3/SiO2之反應 158 4-5.3 添加HCl於H2氣氛下對20% Fe2O3/SiO2之反應 161 4-5.4 添加HCl於CO及H2氣氛下對20% Fe2O3/SiO2之反應 163 4-6 還原反應動力模擬探討 166 4-6.1 第一型之衰退模式 166 4-5.2 第二型之衰退模式 171 第五章 結論與建議 175 5-1 結論 175 5-2 建議 178 參考文獻 179 附錄 186

    Abad, A., Mattisson, T., Lyngfelt, A., Ryden, M., Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85, 1174-1185, 2006.
    Abbasian, J., Slimane, R.B., A regenerable copper-based sorbent for H2S removal from coal gases. Ind. Eng. Chem. Res. 37, 2775-2782, 1998.
    Adanez, J., de Diego, L.F., Garcia-Labiano, F., Gayan, P., Abad, A., Palacios, J.M., Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 18, 371-377, 2004.
    Atimtay, A.T., Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Technologies and Environmental Policy 2, 197-208, 2001.
    Ayala, R.E., Marsh, D.W., Characterization and Long-Range Reactivity of Zinc Ferrite in High -Temperature Desulfurization Processes. Ind. Eng. Chem. Res. 30, 55-60, 1991.
    Azis, M.M., Jerndal, E., Leion, H., Mattisson, T., Lyngfelt, A., On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chem. Eng. Res. Des. 88, 1505-1514, 2010.
    Bakker, W.J.W., Kapteijn, F., Moulijn, J.A., A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning. Chem. Eng. J. 96, 223-235, 2003.
    Bonnet, F., Ropital, F., Lecour, P., Espinat, D., Huiban, Y., Gengembre, L., Berthier, Y., Marcus, P., Study of the oxide/carbide transition on iron surfaces during catalytic coke formation. Surface and Interface Analysis 34, 418-422, 2002.
    Carrasco, P.M., Cortazar, M., Ochoteco, E., Calahorra, E., Pomposo, J.A., Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity. Surface and Interface Analysis 39, 26-32, 2007.
    Cho, P., Mattisson, T., Lyngfelt, A., Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 83, 1215-1225, 2004.
    Corbella, B.M., De Diego, L.F., Garcia-Labiano, F., Adanez, J., Palacios, J.M., Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environ. Sci. Technol. 39, 5796-5803, 2005.
    de Diego, L.F., Garcia-Labiano, F., Adanez, J., Gayan, P., Abad, A., Corbella, B.M., Palacios, J.M., Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 83, 1749-1757, 2004.
    de Diego, L.F., Ortiz, M., Adanez, J., Garcia-Labiano, F., Abad, A., Gayan, P., Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem. Eng. J. 144, 289-298, 2008.
    de Diego, L.F., Ortiz, M., Garcia-Labiano, F., Adanez, J., Abad, A., Gayan, P., Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. J. Power Sources 192, 27-34, 2009.
    Dou, B.L., Pan, W.G., Ren, J.X., Chen, B.B., Hwang, J.H., Yu, T.U., Single and combined removal of HCl and alkali metal vapor from high-temperature gas by solid sorbents. Energy Fuels 21, 1019-1023, 2007.
    Garcia-Labiano, F., Adanez, J., de Diego, L.F., Gayan, P., Abad, A., Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion. Energy Fuels 20, 26-33, 2006.
    Garcia-Labiano, F., de Diego, L.F., Adanez, J., Abad, A., Gayan, P., Temperature variations in the oxygen carrier particles during, their reduction and oxidation in a chemical-looping combustion system. Chem. Eng. Sci. 60, 851-862, 2005.
    Gayan, P., de Diego, L.F., Garcia-Labiano, F., Adanez, J., Abad, A., Dueso, C., Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel 87, 2641-2650, 2008.
    Gayan, P., Dueso, C., Abad, A., Adanez, J., de Diego, L.F., Garcia-Labiano, F., NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods. Fuel 88, 1016-1023, 2009.
    Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., McIntyre, N.S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis 36, 1564-1574, 2004.
    Hatano, H., Low temperature gasification using lattice oxygen. Chem. Eng. Sci. 65, 47-53, 2010.
    Hiemenz, P.C., Principles of Colloid and Surface Chemistry. 1986.
    Hong, H., Jin, H.G., Liu, B.Q., A novel solar-hybrid gas turbine combined cycle with inherent CO2 separation using chemical-looping combustion by solar heat source. J. Sol. Energy Eng. Trans.-ASME 128, 275-284, 2006.
    Hossain, M.M., de Lasa, H.I., Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem. Eng. Sci. 63, 4433-4451, 2008.
    Hossain, M.M., Lopez, D., Herrera, J., de Lasa, H.I., Nickel on lanthanum-modified gamma-Al2O3 oxygen carrier for CLC: Reactivity and stability. Catal. Today 143, 179-186, 2009.
    Ingo, G.M., Riccucci, C., Bultrini, G., Dire, S., Chiozzini, G., Thermal and microchemical characterisation of sol-gel SiO2, TiO2 and xSiO(2)-(1-x)TiO2 ceramic materials. J. Therm. Anal. 66, 37-46, 2001.
    Ishida, M., Jin, H., CO2 recovery in a power plant with chemical looping combustion. Energy Conv. Manag. 38, S187-S192, 1997.
    Ishida, M., Jin, H.G., A novel chemical-looping combustor without NOx formation. Ind. Eng. Chem. Res. 35, 2469-2472, 1996.
    Ishida, M., Yamamoto, M., Ohba, T., Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200 degrees C. Energy Conv. Manag. 43, 1469-1478, 2002.
    Jin, H.G., Ishida, M., Reactivity study on a novel hydrogen fueled chemical-looping combustion. Int. J. Hydrog. Energy 26, 889-894, 2001.
    Jin, H.G., Ishida, M., A new type of coal gas fueled chemical-looping combustion. Fuel 83, 2411-2417, 2004.
    Kameda, T., Uchiyama, N., Park, K.S., Grause, G., Yoshioka, T., Removal of hydrogen chloride from gaseous streams using magnesium-aluminum oxide. Chemosphere 73, 844-847, 2008.
    Lew, S., Sarofim, A.F., Flytzani-Stephanopoulos, M., The Reduction of Zinc Titanate and Zinc-Oxide Solids. Chem. Eng. Sci. 47, 1421-1431, 1992.
    Li, G.T., X. G Wang, et al. , Research progresses in oxygen carriers for chemical-looping combustion. Environmental protection of chemical industry 26(5), 395-399, 2006.
    Li, Z.J., Flytzani-Stephanopoulos, M., Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization. Ind. Eng. Chem. Res. 36, 187-196, 1997.
    Mattisson, T., Lyngfelt, A., Cho, P., The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel 80, 1953-1962, 2001.
    Niemantsverdriet, J.W., Spectroscopy in Catalysis. 1993.
    Nunokawa, M., Kobayashi, M., Shirai, H., Halide compound removal from hot coal-derived gas with reusable sodium-based sorbent. Powder Technol. 180, 216-221, 2008.
    Okada, K., Kameshima, Y., Yasumori, A., Chemical Shifts of Silicon X-ray Photoelectron Spectra by Polymerization Structures of Silicates. Journal of the American Ceramic Society 81, 1970-1972, 1998.
    Patrick, V., Gavalas, G.R., Flytzani-Stephanopoulos, M., Jothimurugesan, K., High-Temperature sulfidation Regeneration of CuO-Al2O3 Sorbents. Ind. Eng. Chem. Res. 28, 931-940, 1989.
    Richter, H.J., Knoche, K.F., Reversibility of Combustion Processes. Acs Symposium Series 235, 71-85, 1983.
    Ryu, H.J., Bae, D.H., Jin, G.T., Effect of temperature on reduction reactivity of oxygen carrier particles in a fixed bed chemical-looping combustor. Korean J. Chem. Eng. 20, 960-966, 2003.
    Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., Reactivity and Durability of Iron-Oxide High-Temperature Desulfurizarion Sorbents. Energy Fuels 7, 632-638, 1993.
    Satterfield, C.N., Heterogeneous catalysis in industrial practice. 2nd edition, 1991.
    Skoog, D.A., H.F.J., A., N.T, Principles of Instaumental Analysis 5E. Saunders College Publishing, 1998.
    Solunke, R.D., Veser, G., Nanocomposite Oxygen Carriers for Chemical-Looping Combustion of Sulfur-Contaminated Synthesis Gas. Energy Fuels 23, 4787-4796, 2009.
    Son, S.R., Go, K.S., Kim, S.D., Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation. Ind. Eng. Chem. Res. 48, 380-387, 2009.
    Sun, Z.C., Yu, F.C., Li, F.X., Li, S.G., Fan, L.S., Experimental Study of HCl Capture Using CaO Sorbents: Activation, Deactivation, Reactivation, and Ionic Transfer Mechanism. Ind. Eng. Chem. Res. 50, 6034-6043, 2011.
    Tian, H.J., Chaudhari, K., Simonyi, T., Poston, J., Liu, T.F., Sanders, T., Veser, G., Siriwardane, R., Chemical-looping Combustion of Coal-derived Synthesis Gas Over Copper Oxide Oxygen Carriers. Energy Fuels 22, 3744-3755, 2008.
    Tseng, T.K., Chang, H.C., Chu, H., Chen, H.T., Hydrogen sulfide removal from coal gas by the metal-ferrite sorbents made from the heavy metal wastewater sludge. Journal of Hazardous Materials 160, 482-488, 2008.
    Villa, R., Cristiani, C., Groppi, G., Lietti, L., Forzatti, P., Cornaro, U., Rossini, S., Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions. J. Mol. Catal. A-Chem. 204, 637-646, 2003.
    Westmoreland, P.R., Harrison, D.P., Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases. Environ. Sci. Technol. 10, 659-661, 1976.
    Wolf, J., Yan, J., Parametric study of chemical looping combustion for tri-generation of hydrogen, heat, and electrical power with CO2 capture. Int. J. Energy Res. 29, 739-753, 2005.
    Zafar, Q., Abad, A., Mattisson, T., Gevert, B., Strand, M., Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chem. Eng. Sci. 62, 6556-6567, 2007.
    Zafar, Q., Mattisson, T., Gevert, B., Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels 20, 34-44, 2006.
    Zhao, J.T., Huang, J.J., Zhang, J.M., Wang, Y., Influence of fly ash on high temperature desulfurization using iron oxide sorbent. Energy Fuels 16, 1585-1590, 2002.
    王奕凱、邱宏明、李秉傑合譯,「非均勻系催化原理與應用」,國立編譯館,渤海堂文化公司,1993。
    行政院環境保護署,「空氣污染防治專責人員訓練教材」,2009。
    李勝利,「各類型偵測感應器簡介」,勞工安全衛生簡訊,第76期13-15,2006。
    林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系,碩士論文,1996。
    紀景發,「以混合材料為Pt/Ru/C觸媒擔體用於改良甲醇燃料電池中陽極觸媒層之效能」,國立成功大學化學工程學系,碩士論文,2006。
    徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
    陳陵援、吳慧眼著,「儀器分析」,三民書局,八月,2000。
    闕志全,「V2O5/TiO2 部分氧化觸媒之特性分析及反應行為探討」,國立中正大學化學工程研究所,碩士論文,2008。

    下載圖示 校內:2013-07-08公開
    校外:2016-07-08公開
    QR CODE