| 研究生: |
林祐竹 Lin, Yu-Chu |
|---|---|
| 論文名稱: |
透明自潔二氧化鈦/二氧化矽奈米粒子薄膜的表面潤濕永續性之研究 A Study of Surface Wetting Sustainability on Transparent TiO2/ SiO2 Nanoparticulate Thin Films with Self-Cleaning Property |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | TiO2/SiO2奈米粒子薄膜 、靜電逐層組裝 、抗反射 、光催化自潔 、表面潤濕永續性 |
| 外文關鍵詞: | antireflection, self-cleaning, photocatalysis, TiO2/SiO2 nanoparticulate thin film, electrostatic layer-by-layer (ELbL), surface wetting sustainability |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TiO2自潔薄膜往往因為材料本身的高折射率造成不透明及暗處存放時造成親水性的喪失,而成為應用時的缺憾。本研究的目的就是嘗試解決這兩個問題。本研究運用全奈米粒子 (all-nanoparticle) 靜電逐層 (electrostatic layer-by-layer, ELbL) 組裝技術,在玻璃基板上交替沉積7 nm TiO2與 22 nm SiO2奈米粒子,並透過以每30個雙層為一週期的週期性鍛燒製程,製備多雙層的奈米粒子薄膜: (TiO2/SiO2)x 及 (TiO2/SiO2)x+0.5,其中x=1-120。除了抗反射及自潔特性之外,也探討這種多功能奈米粒子薄膜的表面潤濕永續性。
由UV-vis穿透光譜的結果顯示本研究製備的奈米粒子薄膜都具有抗反射特性且平均穿透度皆高於玻璃。此外由橢圓偏光儀所測得的平均折射率為1.25±0.06,也驗證了製備低折射率薄膜的可能性及不同外層材料薄膜的結構相似性。然而,比較兩種不同外層材料薄膜在光催化降解膜上之矽烷自組裝單分子層展現接觸角變化時,發現外層材料具有主導性的影響。此外,本研究製備的奈米粒子薄膜不但具有天然超親水性 (靜態接觸角皆小於5o),與純粹是TiO2的奈米粒子薄膜相比,更顯現出優異的表面潤濕永續性。實驗結果也顯示,隨著薄膜雙層數的增加,表面潤濕永續性也隨之增加。當薄膜雙層數 (x) 小於30時,SiO2為外層材料的薄膜:(TiO2/SiO2)x在暗處存放的過程中,其靜態接觸角隨時間爬升的程度相較於以TiO2為外層材料的薄膜: (TiO2/SiO2)x+0.5小,展現較佳的表面潤濕永續性。然而當 x≧60時,兩種不同外層材料的薄膜都表現出極佳的表面潤濕永續性,不同外層材料在表面潤濕永續性上的差異很小。上述薄膜雙層數及外層材料對表面潤濕永續性的影響,本研究嘗試以「外層材料效應」及「TiO2/SiO2界面效應」加以解釋。雙層數低於30的奈米粒子薄膜因為TiO2/SiO2界面不多,表面酸度提升不大,促進表面潤濕永續性的程度較小,因此表面潤濕永續性決定於「外層材料效應」。反之高達60個雙層的奈米粒子薄膜已經具備足夠的TiO2/SiO2界面,「TiO2/SiO2界面效應」主導了促進表面潤濕永續性的程度,使得不同外層材料的影響變得不顯著。本研究所製備的120.5個雙層奈米粒子薄膜,不僅平均穿透度高達94 % ;經過矽烷自組裝單分子層改質的薄膜在5.5 mW/cm2紫外光照射30分鐘後,其靜態接觸角即可從125o下降至0o;暗處存放7個月,接觸角仍然不超過13o。
Lack of transparency due to the high refractive index of TiO2 and loss of hydrophilicity in the dark are two disadvantages for TiO2 thin films in applications. The main purpose of this work is to resolve these problems. All-nanoparticle thin film coatings by electrostatic layer-by-layer (ELbL) assembly of 7 nm TiO2 and 22 nm SiO2 nanoparticles were performed on glass substrates. Followed by periodic calcination process after every 30 bilayers, multibilayer nanoparticulate thin films (TiO2/SiO2)x and (TiO2/SiO2)x+0.5 with x=1-120 can then be fabricated. Besides the antireflective and self-cleaning properties, the surface wetting sustainability in the dark is another property of the as-fabricated nanoparticulate thin films to be investigated.
Antireflective property was exhibited by all of the nanoparticulate thin films fabricated as revealed by UV-vis transmittance spectra. In addition, average refractive index of 1.25±0.06 was determined by ellipsometer. The results showed that conformal structures of multibilayer with low refractive indices can be successfully fabricated. However, the (TiO2/SiO2)x and (TiO2/SiO2)x+0.5 thin films displayed the different self-cleaning property, which was revealed by the change of the water contact angle on dodecyltrichlorosilane (DDTS)-modified surfaces as a function of time under UV illumination. The photocatalytic degradation rates were found to be strongly dependent on the top-layered material of the nanoparticulate thin films. Furthermore, experimental results showed that TiO2/SiO2 nanoparticulate thin films possess superior natural superhydrophilicity (as represented by static contact angle) as well as surface wetting sustainability (as represented by the variation of contact angle with dark storage time) than those of TiO2 nanoparticulate thin films. Experimental results also revealed that the surface wetting sustainability is enhanced with the increasing of bilayer number. When the bilayer number (x) was less than 30, SiO2 top-layered thin films, (TiO2/SiO2)x, displayed the better surface wetting sustainability than TiO2 top-layered thin films, (TiO2/SiO2)x+0.5. Nevertheless, both (TiO2/SiO2)x and (TiO2/SiO2)x+0.5 thin films showed the outstanding surface wetting sustainability when x was larger than 60. In this case, insignificant influence of top-layered materials on surface wetting sustainability is observed. The “top-layered material effect” and “TiO2/SiO2 interface effect” were then proposed to explain the results mentioned above. When the x was less than 30, the “top-layered material effect” was the dominant factor in surface wetting sustainability due to the slight influence of surface acidity in the less TiO2/SiO2 interface. On the other hand, the “TiO2/SiO2 interface effect” was the dominant factor in surface wetting sustainability due to the enough TiO2/SiO2 interface in the films when the x was larger than 60. The most satisfactory case was found for the nanoparticulate thin films with 120.5 bilayers. Average transmittance higher than 94%, static contact angle on DDTS-modified surface decreased from 125o to 0o under UV (5.5 mW/cm2) illumination in 30 min, and contact angle no exceeded 13o after the dark storage for 7 months can be realized by this nanoparticulate thin film.
Ashkarran, A. A. and Mohammadizadeh, M. R., “Superhydrophilicity of TiO2 thin films using TiCl4 as a precursor,” Materials Research Bulletin, 43, 522–530, 2008.
Bravo, J., Zhai, L., Wu, Z., Cohen, R.E. and Rubner, M.F., “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23, 7293- 7298, 2007.
Brunet-Bruneau A, Fisson S., Gallas B., Vuye G. and Rivory J., “Optical properties of mixed TiO2 - SiO2 films, from infrared to ultraviolet, ” Part of the EUROPTO Conference on Advances in Optical Interference Coattncjs Berlin, Germany • May 1999 SPIE Vol. 3738 .
Burdett, J. K., Timothy H., Gordon J. M., James W. R. and Joseph V. S., “Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, ” J. American Chemical Society, 109, 3639–3646, 1987.
Caputo, G., Nobile, C., Kipp, T., Blasi, L., Grillo, V., Carlino, El, Manna, L., Cingolani, R., Cozzoli, P. D. and Athanassiou, A.,“Reversible wettability change in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation,” Journal of Physical Chemistry C, 112, 701-714, 2008.
Chen, F. and Zhao, J., “Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO2/SiO2/γ‐Fe2O3,” Catalysis Letters, 58, 246-247, 1999.
Chen, D., Yan, Y., Westenberg, E., Niebauer, D. and Sakaitani, N., “Development of anti-reflection (AR) coating on plastic panels for display applications,” Journal of Sol-Gel Science and Technology, 19, 77-82, 2000.
Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R. and Yeh, M. C., “Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica,” Chemical Physics Letters, 346, 241-245, 2001.
Decher, G., “Fuzzy nanoassemblies: Toward layered polymeric multi-composites,” Science, 277, 1232-1237, 1997.
Dou, Y., Cui, P. and Fang, X. H., “Effect of SiO2 on the characterization of anatase TiO2/SiO2 nano-film prepared under lower temperature in a liquid phase,” Applied Chemical Industry, 36, 2, 117-120, 2007.
Ehrman, S. H., Friedlander, S. K. and Zachariah, M. R., “Phase segregation in binary SiO2/TiO2, SiO2/Fe2O3 aerosols formed in a premixed flame,” Journal of Materials Research 14 4551-4561, 1999.
Eiamchai, P., Chindaudom, P., Horprathum, M., Patthanasettakul, V. and Limsuwan, P., “Design and investigation of photo-induced super-hydrophilic materials for car mirrors,” Materials and Design, accepted 20 March 2009.
Fang, C., Zhang, G. D. and Pan, S. Y., “Preparation and photocatalytic activity of porous TiO2 film,” Journal of Anhui University of Technology, 22, 4, 362-365, 2005.
Feng, X., Zhai, J. and Jiang, L., “The fabrication and switchable superhydrophobicity of TiO2 nanorod films,” Angewandte Chemie International Edition, 44, 5115-5118, 2005.
Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders,” Journal of Physical Chemistry, 81, 1484-1488, 1977
Fujimoto, M., Ohho, T., Suzuki, H., Koyama, H. and Tanaka, J.,”Nanostructure of TiO2 nano-coated SiO2 particles,” Journal of Americal Ceramic Society, 88, 3264-3266 2005.
Fujishima, A., Rao, T. N. and Tryk, D. A., “Titanum dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21, 2000.
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 37-38, 1972.
Fujishima, A. and Zhang, X., “Titanum dioxide photocatalysis: present situation and future approaches,” Comptes Rendus Chimie, 9, 750-760, 2006.
Fujishima, A., Zhang, X. and Tryk, D. A., “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, 63, 515- 582, 2008.
Gao, T., Qian, C. and Yu, X., “Super-hydrophilicity of TiO2 surface,” Materials Review, 14, 7, 27-29, 2000.
Gao, Y., Masuda, Y. and Koumoto, K., “Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution,” Langmuir, 20, 8, 3188-3194, 2004.
Guan, K., Jiang, Q. and Yin, Y., “Super-hydrophilicity of TiO2/SiO2/CeO2 composite thin films,” Journal of The Chinese Rare Earth Society, 21, 3, 291-294, 2003.
Guan, K., Lu, B. and Yin, Y., “Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films,” Surface and coatings Technology, 173, 219-223, 2003.
Guan, K. S., Hong, X. and Lu, B. J., “Hydrophilic property of SiO2-TiO2 overlayer films and TiO2/ SiO2 mixing films,” Transactions of the Nonferrous Metals Society of China, 14, 2, 251-254, 2004.
Guan, K., “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/ SiO2 films,” Surface & Coatings Technology, 191, 155-160, 2005.
Guan, K. S. and Yin, Y. S., “Effect of rare earth addition on super-hydrophilic property of TiO2/ SiO2 compositr film,” Materials Chemistry and Physics, 92, 10-15, 2005.
Hasan, M. M., Haseeb, A. S. M. A., Saidur, R. and Masjuki, H.,”Effect of annealing treatment on optical properties of anatase TiO2 thin films,” Engineering and technology, 30, 221-225, 2008.
Hashimoto, K., Irie, H. and Fujishima, A., “TiO2 photocatalystsis: A historical overview and future prospects,” Japanese Journal of Applied Physics, 44, 8269-8285, 2005.
Hattori, A., Kawahara, T., Uemoto, T., Suzuki, F., Tada, H. and Ito, S., “Ultrathin SiOx film coating effect on the wettability change of TiO2 surfaces in the presence and absence of UV light illumination,” Journal of Colloid and Interface Science, 232, 410-413, 2000.
He, J.A., Mosurkal, R., Samuelson, L.A., Li, L. and Kumar, J., “Dye- sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles,” Langmuir, 19, 2169-2174, 2003.
Iler, R.K., “Multilayers of colloidal particles,” Journal of Colloid and Interface Science, 21, 569-594, 1966.
Irie, H., Ping, T. S., Shibata, T. and Hashimoto, K., “Reversible control of wettability of a TiO2 surface by introducing surface roughness,” Electrochemical and Solid-State Letters, 8, 9, D23-D25, 2005.
Irie, H., Tsuji, K. I. and Hashimoto, K., “Hydrophobic anatase TiO2-based thin films modified with Al, Cr derivatives to reach reversible wettability control,” Physical Chemistry Chemical Physics, 10, 3072-3076, 2008.
Itoh, M., Hattori, H. and Tanabe, K., “The acidic properties of TiO2- SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butane,” Journal of Catalysis, 35, 2250231, 1974.
Kang M., “Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol,” Journal of Molecular Catalysis A: Chemical, 197, 173-183, 2003.
Kato, S. and Maschio, F., Abtr. Book Annu. Meet.Chemical Society of Japan, 223, 1956.
Kim, J.H., Fujita, S. and Shiratori, S., “Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method,” Thin Solid Films, 499, 83-89, 2006.
Krasnoslobodtsev, A. V. and Smirnov, S. N., “Effect of water on silanization of silica by trimethoxysilanes,” Langmuir, 18, 3181-3184, 2002.
Lee, D., Rubner, M. F. and Cohen, R. E., “All-nanoparticle thin-film coating,” Nano Letters, 6, 10, 2305-2312, 2006.
Lee, Y. C., Hong, Y. P., Lee, H. Y., Kim, H., Jung, Y. J., Ko., K. H., Jung, H. S. and Homg, K. S., “Photocatalysis and hydrophilicity of doped TiO2 thin films,” Journal of Colloid and Interface Science, 267, 1, 127-131, 2003.
Lee, D., Omolade, D., Cohen, R. E. and Rubner, M. F., “pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films,” Chemistry of Materials, 19, 1427-1433, 2007.
Li, J., Tan, X. and Zhao, L., “Research progress in photoinduced super hydrophilicity of TiO2,” Iron Steel Vanadium Titanium, 25, 3, 61-65, 2004.
Lin, Q. J., Zhang, J., Zhu, Z. Q., Wang, Q. H., Jin, Y. X. and Wu, X. H., “Study on mechanism of photo-induced super-hydrophilicity for TiO2 film,” Journal of Functional Materials, Z35, 1779-1781, 2004.
Liu, Q. J., Wu, X. H., Liu, Q. and Wang, B. L., “Study on super-hydrophilicity property of TiO2 thin films,” Journal of Functional Materials and Devices, 8, 3, 238-242, 2002.
Machida, M., Norimoto, K., Watanabe, T., Hashimoto, K. and Fujishima, A., “The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst,” Journal of Materials Science, 34, 2569-2574, 1999.
Macleod, H.A., Thin-Film Optical Filters, 2nd ed., McGrew-Hill, New York, 1986.
Mar, W., Hautman, J. and Klein, M. L., “Molecular dynamics studies of microscopic wetting phenomena on self-assembled monolayers,” Computational Materials Science, 3, 481-497, 1995.
Mardare, D., Iacomi, F. and Luca, D., “Substrate and Fe-doping effects on the hydrophilic properties of TiO2 thin films,” Thin Solid Films, 515, 6474-6478, 2007.
Marcì, G., Palmisano, L., Sclafani, A., Venezia, A. N., Campostrini, R., Carturan, G., Martin, C., Rives, V. and Solana, G., “Influence of tungsten oxide on structural and surface properties of sol–gel prepared TiO2 employed for 4-nitrophenol photodegradation,” Journal of the Chemical Society, Faraday Transactions, 92 819-829 1996.
Mills, A. and Wang, J., “Photobleaching of methylene blue sensitised by TiO2: An ambiguous system?” Journal of Photochemistry and Photobiology A: Chemistry, 127, 123-134, 1999.
Minot, M.J., “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5µ,” Journal of the Optical Society of America, 66, 6, 515-519, 1976.
Mitzi, D.B., “Thin-film deposition of organic-inorganic hybrid materials,” Chemistry of Materials, 13, 3283-3298, 2001.
Miyashita, K., Kuroda, S., Ubukata, T., Ozawa, T. and Kubota, H., “Enhanced effect of vacuum-deposited SiO2 overlayer on photo-induced hydrophilicity of TiO2 film,” Journal of Materials Science, 36, 3877-3884, 2001.
Miyauchi, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., “Photoinduced surface reactions on TiO2 and SrTiO3 films: photocatalytic oxidation and photoinduced hydrophilicity,” Chemistry of Materials, 12, 3-5, 2000.
Miyauchi, M., Nakajima, A., Hashimoto, K. and Watanabe, T., “A highly hydrophilic thin film under 1μW/cm2 UV illumination,” Advanced Materials, 12, 24, 1923-1927, 2000.
Miyauchi M, Nakajima A, Watanabe T. and Hashimoto, K., “Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films,” Chemistry of Materials, 14, 4714–4720, 2002.
Miyauchi, M., Kieda, N., Hishita, S., Mitsuhashi, T., Nakajima, A., Watanabe, T. and Hashimoto, K., “Reversible wettability control of TiO2 surface by light irradiation,” Surface Science, 511, 401-407, 2002.
Nakajima, A., Koizumi, S. I., Watanabe, T. and Hashimoto, K., “Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films,” Langmuir, 16, 17, 7048-4050, 2000.
Nakamura, M., Kobayashi, M., Kuzuya, N., Komatsu, T. and Mochizujka, T., “Hydrophilic property of SiO2/ TiO2 double layer films,” Thin Solid Films, 502, 121-124, 2006.
Neuman, G.A., “Anti-reflective coatings by APCVD using graded index layers,” Journal of Non-Crystalline Solids, 218, 92-99, 1997.
Permpoon, S., Berthome, G., Baroux, B., Joud, J. C. and Langlet, M.. “Natural superhydrophilicity of sol–gel derived SiO2–TiO2 composite films,” Journal of Materials Science, 41, 7650-7662, 2006.
Permpoon, S., Houmard, M., Riassetto, D., Rapenne, L., Berthome, G., Baroux, B., Joud, J. C. and Langlet, M., “Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films,” Thin Solid Films, 516,957-966, 2008.
Sakai, N., Wang, R., Fujishima, A., Watanabe, T. and Hashimoto, K., “Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces,” Langmuir 14, 5918-5920, 1999.
Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K., “Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization,” Journal of Physical Chemistry B, 105, 3023-3026, 2001.
Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K., “Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle,” Journal of Physical Chemistry B, 107, 1028-1035, 2003.
Shen, J., Dong, H., Zhang, Y., Yang, X., Chen H., Gu, Y. and Zhang, Z., “A study of hydrophilicity of titanium dioxide thin films prepared by so-gel method,” Vacuum Science and Technology (China), 20, 385-389, 2000.
Shibata, T., Irie, H. and Hashimoto, K., “Enhancement of photoinduced highly hydrophilic conversion on TiO2 thin films by introducing tensile stress,” Journal of Physical Chemistry B, 107, 10696-10698, 2003.
Silberzan, P., Leger, L., Ausserre, D. and Benattar, J. J., “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir, 7, 1647-1651, 1991.
Sirghi, L. and Hatanaka, Y., “Hydrophilicity of amorphous TiO2 ultra-thin films,” Surface Science, 530, L323–L327, 2003.
Stevens, N., Priest, C. I., Sedev, R. and Ralston, J., “Wettability of Photoresponsive Titanium Dioxide Surfaces,” Langmuir, 19, 3272-3275, 2003.
Sun, R. D., Nakajima, A., Fujishima, A., Watanabe, T. and Hashimoto, K., “Photoinduced surface wettability coversion of ZnO and TiO2 thin films,” Journal of Physical Chemistry B, 105, 1984-1990, 2001.
Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T. and Kitagawa, J., “A new hypothesis regarding the surface acidity of binary metal oxides,” Bulletin of Chemical Society of Japan, 47, 5, 1064-1066, 1974.
Tatsuma, T., Tachibana, S. and Fujishima, A.,
“Remote oxidation of organic compounds by UV-irradiated TiO2 via the gas phase,” Journal of Physical Chemistry B, 105, 6987-6992, 2001.
Ulama, Y., Inoue, H., Ito, K., Kishida, A. and Ikada, Y., “Comparison of Different Methods for Contact Angle Measurement,” Journal of Colloid Interface Science, 141, 275, 1991.
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T., “Light-induced amphiphilic surfaces,” Nature, 388, 431-432, 1997.
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T., “Photogeneration of highly anphiphilic TiO2 surfaces,” Advanced Materials, 10, 2, 135-138, 1998.
Wang, R., Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K., “Studies of surface wettability conversion on TiO2 single-crystal surface,” Journal of Physical Chemistry B, 103, 2188-2194, 1999.
Wang, C. Y., Groenzin, H. and Shultz, M. J., “Molecular species on nanoparticulate Anatase TiO2 film detected by sum frequency generation: Trace hydrocarbons and hydroxyl groups,” Langmuir, 19, 7330-7334, 2003.
Wang, Y., XU, Q., Zhao, P., Tian, X. and Yao, Y., “Research on the mechanism and improvement ways of the hydrophilicity of TiO2 thin film,” Materials Review, 18, 61-64, 2004.
Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A. and Hashimoto, K. “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass,” Thin Solid Films, 351, 260-263, 1999.
Wenzel, R. N., “Resistance of solid surfaces to wetting by water,” Industrial and Engineering Chemistry, 28, 8, 988-994, 1936.
Yan, X., Ohno, T., Nishijima, K., Abe, R. and Ohtani, B., “Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania,” Chemical Physics Letters, 429, 606-610, 2006.
Yoldas, B.E., “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, 19, 9, 1425-1429, 1980.
Yu, J. C., Yu, J., Tang, H. Y. and Zhang, L., “Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films,” Journal of Materials Chemistry, 12, 81-85, 2002.
Yu, J., Yu, J. C., Ho, W. and Jiang, Z., “Effect of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films,” New Journal of Chemistry, 26, 607-613, 2002.
Yu, J., Zhao, X. and Zhao, Q., “Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films,” Journal of Materials Science Letters, 19, 1015-1017, 2000.
Yu, J. G., Zhao, X. J., Chen, W. M., Lin, L. and Zhang, A. L., “Photocatalytic activity and hydrophilic property of TiO2/SiO2 composite nanometer thin films,” Wuli Huaxue Xuebao, 17, 3, 261-264, 2001.
Yu, X. Y. and Cheng, J. J., “The photocatalytic activity and super-hydrophilic property of TiO2-SiO2 films,” Glass & Enamel, 3, 38-43, 2001.
Yuan, W., Ji, J., Fu, J. and Shen, J., “A facile method to construct hybrid multilayered films as a stronge and multifunctional antibacterial coating,” J. Biomedical Materials Research – Part B Applied Biomater- ials, 85, 2, 556-563, 2008.
Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T. and Fujishima, A., “Self-cleaning particle coating with antireflection properties,” Chemistry of Materials, 17, 696-700, 2005.
Zhang, X., Fujishima, A., Jin, M., Emeline, A. V. and Murakami, T., “Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties,” Journal of Physical Chemistry B, 110, 25142-25148, 2006.
Zhao, X. T., Sakka, K., Kihara, N., Takata, Y., Arita, M. and Masuda, M., “Hydrophilicity of TiO2 thin films obtained by RF magnetrron sputtering deposition,” Current Applied Pfysics, 6, 931-933, 2006.
Zhou, X., Xie, Y., He, X. and Liu, B., “Progress in research on super-hydrophilicity of TiO2 thin film,” Industrial Safety and Environmental Protection, 31, 9, 3-6, 2005.
丁訓、祖庸、李曉娥,奈米TiO2 表面改性,化工進展第19期,第1卷,67-70頁,2000年。
丁嘉仁、許沁如、聶雅玉、張哲瑋,次波長結構抗反射膜片發展現況,機械工業雜誌,282期,71-73頁,2006年。
王俊仁,以雙極直流磁控濺鍍製備兼具親水與疏水性二氧化鈦薄膜 (TiO2) 之特性研究,國立高雄海洋科技大學輪機工程學系碩士論文,2003年。
王武敬,光學機能性奈米高分子材料於平面顯示器抗反射光學塗裝之應用,化工資訊與商情,第33期,54-62頁,2006年。
李正中,薄膜光學與鍍膜技術,第二版,藝軒圖書出版社,2001年。
李暐凡,自組裝單分子薄膜重排現象及聚合行為之研究,國立中央大學化學學系碩士論文,2005年。
呂信德,磁控濺鍍TiO2-WO3複合膜光催化性質之研究,成功大學資源工程學系碩士論文,2001年。
林麗娟、田大昌,微結構分析技術介紹,工業材料雜誌 181期,73-79頁,2002年。
林書玄,具抗反射性質的超親水自潔表面之設計與製備,成功大學化學工程學系碩士論文,2008年。
吳依旎,透明可見光催化二氧化鈦自潔表面的製備與鑑定,成功大學化學工程學系碩士論文,2008年。
馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,2003。
張鑑祥,楊毓民,分子層級的薄膜表面型態控制─逐層組裝技術,化工技術第12卷第9期,135-144頁,2004。
鄧文森,添加SiO2對TiO2特性影響之研究,大同大學材料工程學系碩士論文,2003年。