簡易檢索 / 詳目顯示

研究生: 林怡萱
Lin, Yi-Shiuan
論文名稱: 生醫材料中不同尺寸之金屬奈米粒子的製備
Synthesis of Metal Nanoparticles with Different Nanoscale Sizes as Biomedical Materials
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 奈米材料合成生醫奈米材料表面電漿共振X光射線誘導分解一氧化碳
外文關鍵詞: Synthesis, Biomedical nanoparticle, LSPR, X-ray induced decomposition, Carbon monoxide
相關次數: 點閱:102下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究在於探討不同尺寸的生醫金屬奈米材料的製備方法與其延伸用途,共分成兩種金屬奈米材料進行討論。第一部分將探討金奈米粒子的製備與其尺寸形貌的調控,由於近年來製備金奈米粒子多樣且步驟繁雜,因此本研究改良金奈米球與金奈米三角板的合成步驟,能簡化實驗前處理及純化步驟,成功製備出100至250奈米的金奈米球與金奈米三角板,在短時間內得到形貌、尺寸均勻的金奈米粒子,提升製備效率與實驗精確度。在第二部分中,我們研究草酸鍶奈米粒子,相較於侷限微米尺寸的傳統沉澱合成方法,我們利用反微胞微乳液合成方法製備出170至300奈米的草酸鍶粒子,並結合X光激發誘導草酸鍶奈米粒子分解並釋放一氧化碳以進行氣體治療。

    In recent studies, biomedical materials were synthesized typically based on different metal nanoparticles. In this study, we synthesized metal nanoparticles by chemical approaches and discussed the extended applications in biomedicine. There were two sections to this research.
    In the first section, we synthesized the biomedical materials of gold nanospheres and nanotriangle plates. The gold nanoparticles displayed strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (NIR) region. The size of gold nanospheres and nanotriangle plates is from 100 to 250 nm. Eventually, we can quickly obtain gold nanoparticles with uniform morphology and size, improving the synthesis efficiency and experimental accuracy. In the second section, we studied the synthesis of strontium oxalate nanoparticles. We could synthesize nanoscale strontium oxalate by taking the reverse micelle emulsion method and controlling the sizes from 170 to 300 nm. Combined with X-ray irradiation, X-ray could induce the decomposition of strontium oxalate nanoparticles to release carbon monoxide for further gas therapy applications.

    摘要 I 英文延伸摘要(Extended Abstract) II 致謝 XII 目錄 XIII 圖目錄 XV 表目錄 XIX 第一章 緒論 1 1-1 表面電漿共振與能量轉移方式 1 1-2 金屬奈米材料簡介 5 1-2-1 金奈米粒子化學製備原理 5 1-2-2 金奈米球體之製備方法 5 1-2-3 金奈米三角板之製備方法 10 1-2-4 金奈米粒子在生醫材料的發展 13 1-2-5 草酸鍶奈米粒子製備原理 18 1-2-6 X光照射分解草酸鍶釋放一氧化碳 24 1-3 一氧化碳治療(CO Therapy) 26 1-3-1 一氧化碳釋放分子(Carbon Monoxide Releasing Molecule, CORM) 27 1-3-2 光催化二氧化碳生成一氧化碳之奈米材料 30 第二章 金奈米粒子用於生醫材料 32 2-1 研究動機與目的 32 2-2 實驗藥品與儀器 33 2-2-1 實驗藥品 33 2-2-2 實驗儀器 34 2-3 實驗方法 35 2-3-1 金奈米球體(Au NSs)之製備 35 2-3-2 金奈米三角板(Au NPs)之製備 36 2-4 實驗結果與討論 38 2-4-1 金奈米球體(Au NSs)尺寸調控與材料鑑定 38 2-4-2 金奈米三角板(Au NPs)尺寸調控與材料鑑定 43 2-5 章節結論 49 第三章 草酸鍶奈米粒子用於生醫材料 50 3-1 研究動機與目的 50 3-2 實驗藥品與儀器 51 3-2-1 實驗藥品 51 3-2-2 實驗儀器 52 3-3 實驗方法 53 3-3-1 草酸鍶奈米粒子(SrC2O4 NPs)之製備 53 3-3-2 草酸鍶奈米粒子照射X光射線之實驗步驟 55 3-3-3 一氧化碳(CO)釋放之測量方法 57 3-4 實驗結果與討論 58 3-4-1 草酸鍶奈米粒子(SrC2O4 NPs)尺寸調控 58 3-4-2 草酸鍶奈米粒子(SrC2O4 NPs)鑑定 61 3-4-3 草酸鍶奈米粒子(SrC2O4 NPs)釋放一氧化碳之測試 63 3-4-4 討論 64 3-5 章節結論 67 第四章 結論 67 參考文獻 68

    1. Hammond, J.; Bhalla, N.; Rafiee, S.; Estrela, P., Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors 2014, 4 (2), 172-188.
    2. Gellé, A.; Jin, T.; De La Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A., Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews 2020, 120 (2), 986-1041.
    3. Zhang, N.; Han, C.; Fu, X.; Xu, Y.-J., Function-Oriented Engineering of Metal-Based Nanohybrids for Photoredox Catalysis: Exerting Plasmonic Effect and Beyond. Chem 2018, 4 (8), 1832-1861.
    4. Jaque, D.; Martínez Maestro, L.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J., Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
    5. Chow, T. H.; Lai, Y.; Cui, X.; Lu, W.; Zhuo, X.; Wang, J., Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. Small 2019, 15 (35), e1902608.
    6. Kim, M.; Lee, J. H.; Nam, J. M., Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science 2019, 6 (17), 1900471.
    7. Webb, J. A.; Bardhan, R., Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6 (5), 2502.
    8. Tee, S. Y.; Win, K. Y.; Goh, S. S.; Teng, C. P.; Tang, K. Y.; Regulacio, M. D.; Li, Z.; Ye, E., Chapter 1. Introduction to Photothermal Nanomaterials. Royal Society of Chemistry: 2022; pp 1-32.
    9. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司: 台灣, 2004.
    10. Elahi, N.; Kamali, M.; Baghersad, M. H., Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537-556.
    11. Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M. E. C. M., Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds 2019, 798, 714-740.
    12. Yeh, Y.-C.; Creran, B.; Rotello, V. M., Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4 (6), 1871-1880.
    13. Zhao, P.; Li, N.; Astruc, D., State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews 2013, 257 (3-4), 638-665.
    14. Dong, Y. C.; Hajfathalian, M.; Maidment, P. S. N.; Hsu, J. C.; Naha, P. C.; Si-Mohamed, S.; Breuilly, M.; Kim, J.; Chhour, P.; Douek, P.; Litt, H. I.; Cormode, D. P., Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Scientific Reports 2019, 9 (1).
    15. Zheng, Y.; Zhong, X.; Li, Z.; Xia, Y., Successive, Seed-Mediated Growth for the Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range of 5-150 nm. Particle & Particle Systems Characterization 2014, 31 (2), 266-273.
    16. Bastús, N. G.; Comenge, J.; Puntes, V., Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27 (17), 11098-11105.
    17. Ziegler, C.; Eychmüller, A., Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15−300 nm. The Journal of Physical Chemistry C 2011, 115 (11), 4502-4506.
    18. Zhang, T.; Li, X.; Li, C.; Cai, W.; Li, Y., One-Pot Synthesis of Ultrasmooth, Precisely Shaped Gold Nanospheres via Surface Self-Polishing Etching and Regrowth. Chemistry of Materials 2021, 33 (7), 2593-2603.
    19. Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A., Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles. Nano Letters 2008, 8 (8), 2526-2529.
    20. Duchene, J. S.; Niu, W.; Abendroth, J. M.; Sun, Q.; Zhao, W.; Huo, F.; Wei, W. D., Halide Anions as Shape-Directing Agents for Obtaining High-Quality Anisotropic Gold Nanostructures. Chemistry of Materials 2013, 25 (8), 1392-1399.
    21. Sun, Z.; Umar, A.; Zeng, J.; Luo, X.; Song, L.; Zhang, Z.; Chen, Z.; Li, J.; Su, F.; Huang, Y., Highly Pure Gold Nanotriangles with almost 100% Yield for Surface-Enhanced Raman Scattering. ACS Applied Nano Materials 2022, 5 (1), 1220-1231.
    22. Millstone, J. E.; Métraux, G. S.; Mirkin, C. A., Controlling the Edge Length of Gold Nanoprisms via a Seed-Mediated Approach. Advanced Functional Materials 2006, 16 (9), 1209-1214.
    23. Lin, G.; Lu, W.; Cui, W.; Jiang, L., A Simple Synthesis Method for Gold Nano- and Microplate Fabrication Using a Tree-Type Multiple-Amine Head Surfactant. Crystal Growth & Design 2010, 10 (3), 1118-1123.
    24. Chu, H.-C.; Kuo, C.-H.; Huang, M. H., Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges. Inorganic Chemistry 2006, 45 (2), 808-813.
    25. Huang, W.-L.; Chen, C.-H.; Huang, M. H., Investigation of the Growth Process of Gold Nanoplates Formed by Thermal Aqueous Solution Approach and the Synthesis of Ultra-Small Gold Nanoplates. The Journal of Physical Chemistry C 2007, 111 (6), 2533-2538.
    26. Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y.; Bao, F.; Sun, B.; Zhang, X.; Zhang, Q., High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 2014, 14 (12), 7201-6.
    27. Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M., Optical Properties and Applications of Plasmonic‐Metal Nanoparticles. Advanced Functional Materials 2020, 30 (51), 2005400.
    28. Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L., The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. International Journal of Molecular Sciences 2020, 21 (7), 2480.
    29. Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials 2006, 5 (2), 118-122.
    30. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. Journal of the American Chemical Society 2007, 129 (24), 7661-7665.
    31. Sun, I.-C.; Eun, D.-K.; Na, J. H.; Lee, S.; Kim, I.-J.; Youn, I.-C.; Ko, C.-Y.; Kim, H.-S.; Lim, D.; Choi, K.; Messersmith, P. B.; Park, T. G.; Kim, S. Y.; Kwon, I. C.; Kim, K.; Ahn, C.-H., Heparin-Coated Gold Nanoparticles for Liver-Specific CT Imaging. Chemistry - A European Journal 2009, 15 (48), 13341-13347.
    32. He, S.; Song, J.; Qu, J.; Cheng, Z., Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chemical Society Reviews 2018, 47 (12), 4258-4278.
    33. Sivasubramanian, M.; Chuang, Y.; Lo, L.-W., Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019, 24 (3), 520.
    34. Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.; Yuan, K.; Zhou, N.; Min, W., Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Scientific Reports 2018, 8 (1).
    35. Ali, M. R. K.; Wu, Y.; El-Sayed, M. A., Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application. The Journal of Physical Chemistry C 2019, 123 (25), 15375-15393.
    36. Ha, M.; Nam, S. H.; Sim, K.; Chong, S.-E.; Kim, J.; Kim, Y.; Lee, Y.; Nam, J.-M., Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. Nano Letters 2021, 21 (1), 731-739.
    37. Zhang, Y.; Chang, J.; Huang, F.; Yang, L.; Ren, C.; Ma, L.; Zhang, W.; Dong, H.; Liu, J.; Liu, J., Acid-Triggered <i>in Situ</i> Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomaterials Science &amp; Engineering 2019, 5 (3), 1589-1601.
    38. Gallagher, P. K., Thermal Decomposition of Barium and Strontium Trisoxalatoferrates (III). Inorganic Chemistry 1965, 4 (7), 965-970.
    39. Knaepen, E.; Mullens, J.; Yperman, J.; VanPoucke, L. C., Preparation and thermal decomposition of various forms of strontium oxalate. Thermochimica Acta 1996, 284 (1), 213-227.
    40. Zhang, D.; Qi, L.; Ma, J.; Cheng, H., Biomimetic growth of strontium oxalate aggregates with unusual morphologies in the presence of poly(methacrylic acid). CrystEngComm 2002, 4 (88), 536.
    41. Yu, J.; Tang, H.; Cheng, B., Morphological control of strontium oxalate particles by PSMA-mediated precipitation reaction. Materials Chemistry and Physics 2005, 91 (1), 134-139.
    42. Ganguli, A. K.; Ganguly, A.; Vaidya, S., Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 2010, 39 (2), 474-485.
    43. Marchand, K. E.; Tarret, M.; Lechaire, J. P.; Normand, L.; Kasztelan, S.; Cseri, T., Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles : an electron microscopy study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 214 (1-3), 239-248.
    44. Sunaina, S.; Sethi, V.; Mehta, S. K.; Ganguli, A. K.; Vaidya, S., Understanding the role of co-surfactants in microemulsions on the growth of copper oxalate using SAXS. Physical Chemistry Chemical Physics 2019, 21 (1), 336-348.
    45. Vaidya, S.; Rastogi, P.; Agarwal, S.; Gupta, S. K.; Ahmad, T.; Antonelli, A. M.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K., Nanospheres, Nanocubes, and Nanorods of Nickel Oxalate: Control of Shape and Size by Surfactant and Solvent. The Journal of Physical Chemistry C 2008, 112 (33), 12610-12615.
    46. <Angew Chem Int Ed - 2000 - Vaucher - Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse.pdf>.
    47. Ganguli, A. K.; Ahmad, T., Nanorods of iron oxalate synthesized using reverse micelles: facile route for alpha-Fe2O3 and Fe3O4 nanoparticles. J Nanosci Nanotechnol 2007, 7 (6), 2029-35.
    48. Ranjan, R.; Vaidya, S.; Thaplyal, P.; Qamar, M.; Ahmed, J.; Ganguli, A. K., Controlling the Size, Morphology, and Aspect Ratio of Nanostructures Using Reverse Micelles: A Case Study of Copper Oxalate Monohydrate. Langmuir 2009, 25 (11), 6469-6475.
    49. Pravica, M.; Evlyukhin, E.; Cifligu, P.; Harris, B.; Jae Koh, J.; Chen, N.; Wang, Y., X-ray induced synthesis of a novel material: Stable, doped solid CO at ambient conditions. Chemical Physics Letters 2017, 686, 183-188.
    50. Goldberger, D.; Evlyukhin, E.; Cifligu, P.; Wang, Y.; Pravica, M., Measurement of the Energy and High-Pressure Dependence of X-ray-Induced Decomposition of Crystalline Strontium Oxalate. The Journal of Physical Chemistry A 2017, 121 (38), 7108-7113.
    51. Ling, K.; Men, F.; Wang, W.-C.; Zhou, Y.-Q.; Zhang, H.-W.; Ye, D.-W., Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). Journal of Medicinal Chemistry 2018, 61 (7), 2611-2635.
    52. Szabo, C., Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nature Reviews Drug Discovery 2016, 15 (3), 185-203.
    53. Manoharan, D.; Li, W.-P.; Yeh, C.-S., Advances in controlled gas-releasing nanomaterials for therapeutic applications. Nanoscale Horizons 2019, 4 (3), 557-578.
    54. Otterbein, L. E.; Foresti, R.; Motterlini, R., Heme Oxygenase-1 and Carbon Monoxide in the Heart. Circulation Research 2016, 118 (12), 1940-1959.
    55. Chen, L.; Zhou, S.-F.; Su, L.; Song, J., Gas-Mediated Cancer Bioimaging and Therapy. ACS Nano 2019, 13 (10), 10887-10917.
    56. Berends, H.-M.; Kurz, P., Investigation of light-triggered carbon monoxide release from two manganese photoCORMs by IR, UV–Vis and EPR spectroscopy. Inorganica Chimica Acta 2012, 380, 141-147.
    57. Romão, C. C.; Blättler, W. A.; Seixas, J. D.; Bernardes, G. J. L., Developing drug molecules for therapy with carbon monoxide. Chemical Society Reviews 2012, 41 (9), 3571.
    58. Kautz, A. C.; Kunz, P. C.; Janiak, C., CO-releasing molecule (CORM) conjugate systems. Dalton Transactions 2016, 45 (45), 18045-18063.
    59. Jin, Z.; Duo, Y.; Li, Y.; Qiu, M.; Jiang, M.; Liu, Q.; Zhao, P.; Yang, T.; Liang, W.; Zhang, H.; Cao, Y.; He, Q., A novel NIR-responsive CO gas-releasing and hyperthermia-generating nanomedicine provides a curative approach for cancer therapy. Nano Today 2021, 38.
    60. Wang, X.-S.; Zeng, J.-Y.; Li, M.-J.; Li, Q.-R.; Gao, F.; Zhang, X.-Z., Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano 2020, 14 (8), 9848-9860.
    61. Ma, W.; Chen, X.; Fu, L.; Zhu, J.; Fan, M.; Chen, J.; Yang, C.; Yang, G.; Wu, L.; Mao, G.; Yang, X.; Mou, X.; Gu, Z.; Cai, X., Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms. ACS Applied Materials &amp; Interfaces 2020, 12 (20), 22479-22491.
    62. Wang, S.-B.; Zhang, C.; Chen, Z.-X.; Ye, J.-J.; Peng, S.-Y.; Rong, L.; Liu, C.-J.; Zhang, X.-Z., A Versatile Carbon Monoxide Nanogenerator for Enhanced Tumor Therapy and Anti-Inflammation. ACS Nano 2019, 13 (5), 5523-5532.
    63. Wang, S.-B.; Zhang, C.; Ye, J.-J.; Zou, M.-Z.; Liu, C.-J.; Zhang, X.-Z., Near-Infrared Light Responsive Nanoreactor for Simultaneous Tumor Photothermal Therapy and Carbon Monoxide-Mediated Anti-Inflammation. ACS Central Science 2020, 6 (4), 555-565.
    64. Wu, W.-T.; Chen, C.-H.; Chiang, C.-Y.; Chau, L.-K., Effect of Surface Coverage of Gold Nanoparticles on the Refractive Index Sensitivity in Fiber-Optic Nanoplasmonic Sensing. Sensors 2018, 18 (6), 1759.
    65. Jain, P. K.; Huang, W.; El-Sayed, M. A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters 2007, 7 (7), 2080-2088.
    66. Huang, Y.; Ferhan, A. R.; Gao, Y.; Dandapat, A.; Kim, D.-H., High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 2014, 6 (12), 6496-6500.
    67. Baghalha, M., The leaching kinetics of an oxide gold ore with iodide/iodine solutions. Hydrometallurgy 2012, 113-114, 42-50.
    68. Atkin, A. J.; Lynam, J. M.; Moulton, B. E.; Sawle, P.; Motterlini, R.; Boyle, N. M.; Pryce, M. T.; Fairlamb, I. J. S., Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes. Dalton Transactions 2011, 40 (21), 5755.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE