簡易檢索 / 詳目顯示

研究生: 陳治均
Chen, Chih-Chun
論文名稱: 分子結構對凝膠物性影響-含對苯有機凝膠體之合成與特性探討
Structural Effect on Organogelations and Physical Properties - Synthesis and Characterization of Phenylene Derived Gelators
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 自組裝超分子凝膠熱穩定度液晶物理性凝膠
外文關鍵詞: self-assembly, supramolecular gels, thermal stability, liquid crystal, physical gel
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成兩種具熱可逆性的小分子凝膠體C11和AC11。測試其在各種有機溶劑的凝膠化能力,發現兩凝膠體因結構具有長碳鏈,故皆能有效使多種溶劑凝膠化。由SEM和TEM可觀察乾凝膠(xerogel)下的型態能隨著溶劑不同而改變。以變溫NMR可確認凡德瓦爾力及π-π堆疊作用力對凝膠體形成三維結構的重要性。本研究也測試三種組成下(C11、AC11及1:1混合)的熱穩定度曲線,發現混合多種凝膠體可提升熱穩定度。此外,我們也制備液晶物理性凝膠(Liquid-crystalline physical gel),以液晶HSG22200為主體混合低濃度凝膠體,形成ㄧ新型材料。由相圖可觀察到C11的相轉移溫度比AC11的低,可歸因於C11較弱的分子間作用力,另外,增加凝膠體的濃度可強化三維結構進而提升熱穩定度。

    Two thermo-reversible organogelators C11 and AC11 were synthesized. The gelation behaviors of synthesized compounds were investigated in various organic solvents, while both of them could gelate lots of solvents due to flexibilities of long carbon chain. The morphologies of gels could be altered through different solvent confirmed by SEM and TEM observations. The temperature-dependent 1H-NMRs verified that van der Waals forces and π-π interactions acted as driving forces leading to gelators self-assembling into three-dimensional networks. To further understand thermal stability and aging effect of gels, plots of Tgel against time elapsed were carried out in a variety of organic solvents in groups of C11, AC11, and equimolar mixture of C11 and AC11, separately. The results suggested that mixing several gelators was probable to elevate thermal properties if there were proper molecular associations. Liquid crystal physical gels were also prepared by mixing liquid crystal HSG22200 and low concentration of gelators and the phase diagrams of mixtures were completed. The Tsol–gels of the mixtures based on C11 were lower than those of the gels based on AC11 gelators, indicating that the interactions among C11 were lower than that of AC11. Besides, increased concentration of gelators resulted in the formation of the network with stronger molecular associations, leading to improved thermal stability preferable for practical uses.

    Abstract I 摘要 II 致謝 III Contents III List of Tables VI List of Figures VII List of Schemes XII I. Introduction 1 1-1 Overview 1 1-2 Research Motivation 2 II. Literature Review 3 2-1 Supramolecular Chemistry 3 2-2 Self-assembly 5 2-3 Introduction of Gels 7 2-4 Low Molecular-Mass Organic Gelators (LMOGs) 9 2-4-1 Alkane Gelators 10 2-4-2 Organic Gelators with One Heteroatom 12 2-4-3 Organic Gelators with Two Heteroatoms 15 2-4-4 Organic Gelators Containing Three Heteroatom Types 16 2-4-5 Polymerizable Organic Gelators 18 2-4-6 Microemulsion-based Gelators 20 2-5 Multi-Component Supramolecular Gels 21 2-6 Liquid-crystalline Physical Gels 24 III. Experimental 32 3-1 Materials 32 3-2 Instruments 34 3-3 Experimental 35 3-3-1 Preparation of gels 37 3-3-2 SEM Sample Preparation 37 3-3-3 TEM Sample Preparation 37 3-3-4 Temperature-dependent 1H-NMR Measurement 37 3-3-5 XRD Sample Preparation 38 3-3-6 Tgel Measurement 38 3-3-7 Preparation of Liquid-Crystalline Physical gels (LC gels) 38 IV. Results and Discussion 40 4-1 Characterization of the Synthesized compounds 40 4-2 Gelation Behaviors of the Synthesized Molecules 44 4-3 Morphology Studies of Organogels 47 4-4 Temperature-Dependent 1H-NMR Analysis 52 4-5 XRD Analysis of Self-Assembled Gels 54 4-6 Gels Stability Analysis 57 4-7 Liquid-Crystalline Physical gels (LC gels) 59 V. Conclusions 66 References 67

    1. Buerkle, L. E. and Rowan S. J., Supramolecular Gels Formed from Multi-Component Low Molecular Weight Species. Chem Soc Rev, 2012, 41(18), 6089-6102.
    2. Lehn, J. M., Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules,and Molecular Devices. Angewandte Chemie-International Edition in English, 1988, 27(1), 89-112.
    3. Lehn, J. M., Perspectives in Supramolecular Chemistry - from Molecuelar Recognition Towards Molecular Information-Processing and Self-Organization. Angewandte Chemie-International Edition in English, 1990, 29(11), 1304-1319.
    4. Lehn, J. M., Supramolecular Chemistry. Science, 1993, 260(5115), 1762-1763.
    5. Whitesides, G. M. and Grzybowski, B., Self-assembly at all scales. Science, 2002, 295(5564), 2418-2421.
    6. Ozin, G. A., Hou, K., Lotsch, B. V., Cademartiri, L., Puzzo, D. P., Scotognella, F., Ghadimi, A. and Thomson, J., Nanofabrication by Self-Assembly. Materials Today, 2009, 12(5), 12-23.
    7. Safont-Sempere, M. M., Fernandez, G. and Wurthner, F., Self-Sorting Phenomena in Complex Supramolecular Systems. Chemical Reviews, 2011, 111(9), 5784-5814.
    8. Xia, Y. N., Gates, B., Yin, Y. D., Lu, Y., Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials, 2000, 12(10), 693-713.
    9. Coates, I. A. and Smith, D.K., Controlled Self-Assembly-Synthetic Tunability and Covalent Capture of Nanoscale Gel Morphologies. Chemistry, 2009, 15(26) 6340-6344.
    10. Hirst, A. R., Escuder, B., Miravet, J. F., Smith, D. K., High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie-International Edition, 2008, 47(42), 8002-8018.
    11. Pekala, R. W., Organic Aerogels from the Polycondensation of Resorcinol with Formaldehyde. Journal of Materials Science, 1989, 24(9), 3221-3227.
    12. Job, N., Thery, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J. N., Beguin, F., Pirard, J. P., Carbon Aerogels, Cryogels and Xerogels: Influence of the Drying Method on the Textural Properties of Porous Carbon Materials. Carbon, 2005, 43(12), 2481-2494.
    13. Sangeetha, N. M. and Maitra, U., Supramolecular Gels: Functions and Uses. Chem Soc Rev, 2005, 34(10), 821-836.
    14. Abdallah, D. J. and Weiss, R. G., Organogels and Low Molecular Mass Organic Gelators. Advanced Materials, 2000, 12(17), 1237-1247.
    15. Terech, P. and Weiss, R. G., Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews, 1997, 97(8), 3133-3159.
    16. Weiss, R. G. and Terech, P., Molecular Gels. Materials with Self-Assembled Fibrillar Networks, 2006.
    17. George, M. and Weiss, R. G., Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids. Accounts of Chemical Research, 2006, 39(8), 489-497.
    18. Abdallah, D. J., Sirchio, S. A., and Weiss, R.G., Hexatriacontane Organogels. The First Determination of the Conformation and Molecular Packing of a Low-Molecular-Mass Organogelator in its Gelled State. Langmuir, 2000, 16(20), 7558-7561.
    19. Abdallah, D. J. and Weiss, R. G., n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids). Langmuir, 2000, 16(2), 352-355.
    20. Terech, P., Rodriguez, V., Barnes, J. D., McKenna, G. B., Organogels and Aerogels of Racemic and Chiral 12-Hydroxyoctadecanoic Acid. Langmuir, 1994, 10(10), 3406-3418.
    21. Ilzhoefer, J. R. and Spontak, R.J., Effect of Polymer Composition on the Morphology of Self-assembled Dibenzylidene Sorbitol. Langmuir, 1995, 11(9), 3288-3291.
    22. Tomioka, K., Sumiyoshi, T., Narui, S., Nagaoka, Y., Iida, A., Miwa, Y., Taga, T., Nakano, M. and Handa, T., Molecular Assembly and Gelating Behavior of Didodecanoylamides of α, ω-Alkylidenediamines. Journal of the American Chemical Society, 2001, 123(47), 11817-11818.
    23. Lyon, R. P. and Atkins, W. M., Self-Assembly and Gelation of Oxidized Glutathione in Organic Solvents. Journal of the American Chemical Society, 2001, 123(19), 4408-4413.
    24. Niece, K. L., Hartgerink. J. D., Donners, J., Stupp, S. I., Self-Assembly Combining Two Bioactive Peptide-Amphiphile Molecules into Nanofibers by Electrostatic Attraction. Journal of the American Chemical Society, 2003, 125(24), 7146-7147.
    25. Hartgerink, J. D., Beniash, E. and Stupp, S. I., Peptide-Amphiphile Nanofibers: a Versatile Scaffold for the Preparation of Self-Assembling Materials. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8), 5133-5138.
    26. Masuda, M., Hanada, T., Yase, K. and Shimizu, T., Polymerization of Bolaform Butadiyne 1-Glucosamide in Self-Assembled Nanoscale-Fiber Morphology. Macromolecules, 1998, 31(26), 9403-9405.
    27. Atkinson, P. J., Grimson, M. J., Heenan R. K., Howe, A. M. and Robinson, B. H., Structure of Microemusion-Based Organ-Gels, 1989, 23 J Chem Soc. Chem Commun, 1807-1809.
    28. Dzolic, Z., Wolsperger, K. and Zinic, M., Synergic Effect in Gelation by Two-Component Mixture of Chiral Gelators. New Journal of Chemistry, 2006, 30(10), 1411-1419.
    29. Mizoshita, N., Suzuki, Y., Kishimoto, K., Hanabusa, K. and Kato, T., Electrooptical Properties of Liquid-Crystalline Physical Gels: a New Oligo(Amino Acid) Gelator for Light Scattering Display Materials. J. Mater. Chem., 2002, 12(8), 2197-2201.
    30. Mizoshita, N., Hanabusa, K. and Kato, T., Nematic Liquid-Crystalline Physical Gels Exhibiting Faster Responses to Electric Fields in Twisted Nematic Cells. Displays, 2001, 22(1), 33-37.
    31. Kato, T., Hirai, Y., Nakaso, S. and Moriyama, M., Liquid-Crystalline Physical Gels. Chem Soc Rev, 2007, 36(12), 1857-1867.
    32. Kato, T., Mizoshita, N. and Kishimoto, K., Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials. Angewandte Chemie-International Edition, 2006, 45(1), 38-68.
    33. Kato, T., Kutsuma, T., Yabuuchi, K. and Mizoshita, N., Anisotropic Self-Aggregation of an Anthracene Derivative: Formation of Liquid-Crystalline Physical Gels in Oriented States. Langmuir, 2002, 18(18), 7086-7088.
    34. Mizoshita, N., Hanabusa, K. and Kato, T., Fast and High-Contrast Electro-Optical Switching of Liquid-Crystalline Physical Gels: Formation of Oriented Microphase-Separated Structures. Advanced Functional Materials, 2003, 13(4), 313-317.
    35. Eimura, H., Yoshio, M., Shoji, Y., Hanabusa, K., Kato, T., Liquid-Crystalline Gels Exhibiting Electrooptical Light Scattering Properties: Fibrous Polymerized Network of a Lysine-Based Gelator Having Acrylate Moieties. Polymer Journal, 2012, 44(6), 594-599.
    36. Mizoshita, N., Suzuki, Y., Hanabusa, K., Kato, T., Bistable Nematic Liquid Crystals with Self-Assembled Fibers. Advanced Materials, 2005, 17(6), 692-696.
    37. Smith, M. M. and Smith, D. K., Self-Sorting Multi-Gelator Gels-Mixing and Ageing Effects in Thermally Addressable Supramolecular Soft Nanomaterials. Soft Matter, 2011, 7(10), 4856-4860.
    38. Chen, S., Luo, X., He, H. W., Tong, X. Q., Wu, B. Z., Ma, M. and Wang, X., Stretchable Light Scattering Display Based on Super Strong Liquid Crystalline Physical Gels with Special Loofah-Like 3D Gel Networks. Journal of Materials Chemistry C, 2015, 3(46), 12026-12031.

    下載圖示 校內:2018-07-06公開
    校外:2018-07-06公開
    QR CODE