| 研究生: |
劉佳樺 Liu, Jia-Hua |
|---|---|
| 論文名稱: |
功能性梯度材料梁於彈性介質上之大振幅自然振動分析 Large-Amplitude Free Vibration Analysis of Functionally Graded Beams Resting on an Elastic Medium |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 梁 、功能性梯度材料 、幾何非線性分析 、混合Timoshenko梁理論 、Pasternak基礎 、Hamilton原理 |
| 外文關鍵詞: | Beams, Functionally graded material, Geometrically nonlinear analysis, Mixed Timoshenko beam theory, Pasternak’s foundation, Hamilton’s principle |
| 相關次數: | 點閱:161 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於廣義的Hamilton原理與Timoshenko梁理論,發展適用於幾何非線性自由振動分析之混合有限元素法。文中考慮具彈性基礎之功能性梯度材料梁,其邊界條件為簡支承、固定端及自由端等不同邊界條件之組合,功能性梯度材料梁由兩相材料所組成,其材料性質是根據組成體積分率的冪次函數分佈,沿厚度方向逐漸且平滑地變化,並且使用複合材料之二相材料混合原理評估梁的有效材料特性。本混合有限元素法的弱形式數學方程式則是利用變分法推導求得,其中也考慮了馮卡門幾何非線性效應。數值範例中利用迭代程序獲得梁的非線性振幅-頻率關係的有限元素解。結果顯示,本有限元素解可迅速達到收斂,且其收斂解與文獻中之精確解相當吻合。
Based on the generalized Hamilton’s principle combined with the Timoshenko beam theory, the authors develop a mixed finite element method for the geometrically nonlinear free vibration analyses of a functionally graded beam resting on an elastic medium and with combinations of simply-supported, clamped and free edge conditions. The functionally graded beam is composed of a two-phase material, the material properties of which gradually and smoothly vary through the thickness direction according to the power-law distributions of the volume fractions of the constituents, and the effective material properties of the beam are estimated using the rule of mixtures. A weak-form formulation for the mixed finite element analysis is derived using the variational approach, in which the von Kármán geometrical nonlinearity is considered. The finite element solutions of the nonlinear amplitude-frequency relations of the beam are obtained using an iterative process. The results show that the finite element solutions converge rapidly, and the convergent solutions closely agree with the accurate ones available in the literature.
Ahmed, Z., Khalid, E. B., and Rhali, B., “A homogenization procedure for nonlinear free vibration analysis of functionally graded beams resting on nonlinear elastic foundations”, Appl. Mech. Mater. 232, 427-431, 2012.
Alinaghizadeh, F., and Kadkhodayan, M., “Investigation of nonlinear bending analysis of moderately thick functionally graded material sector plates subjected to thermomechanical loads by the GDQ method”, J. Eng. Mech. 140(5), 04014012 (11 pages), 2014.
Aydogdu, M., “Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method”, Int. J. Mech. Sci. 47(11), 1740-1755, 2005.
Aydogdu, M., and Taskin, V., “Free vibration analysis of functionally graded beams with simply supported edges”, Mater. Des. 28(5), 1651-1656, 2007.
Azrar, L., Benamar, R., and White, R. G., “A semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: General theory and application to the single mode approach to free and forced vibration analysis”, J. Sound Vib. 224(2), 183-207, 1999.
Bhashyam, G. R., and Prathap, G., “Galerkin finite element method for nonlinear beam vibrations”, J. Sound Vib. 72, 191-203, 1980.
Brischetto, S., and Carrera, E., “Analysis of nano-reinforced layered plates via classical and refined two-dimensional theories”, Multidisc. Model. Mater. Struct. 8(1), 4-31, 2012a.
Brischetto, S., and Carrera, E., “Classical and refined shell models for the analysis of nano-reinforced structures”, Int. J. Mech. Sci. 55(1), 104-117, 2012b.
Carrera, E., “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates”, Compos. Struct. 50(2), 183-198, 2000.
Carrera, E., “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking”, Arch. Comput. Methods Eng. 10(3), 216-296, 2003.
Carrera, E., “Assessment of theories for free vibration analysis of homogeneous and multilayered plates”, Shock Vib. 11(34), 261-270, 2004.
Chakraborty, A., Mahapatra, D.R., and Gopalakrishnan, S., “Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities”, Compos. Struct. 55(1), 23-36, 2002.
Chakraborty, A., Gopalakrishnan, S., and Reddy, J.N., “A new beam finite element for the analysis of functionally graded materials”, Int. J. Mech. Sci. 45 (3), 519-539, 2003.
Chaudhari, V. K., and Lal, A., “Nonlinear free vibration analysis of elastically supported nanotube-reinforced composite beam in thermal environment”, Procedia Eng. 144, 928-935, 2016.
Elmaguiri, M. N., Haterbouch, M., Bouayad, A., and Oussouaddi, O., “Geometrically nonlinear free vibration of functionally graded beams”, J. Mater. Environ. Sci. 6(12), 3620-3633, 2015.
Fallah, A., and Aghdam, M. M., “Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation”, Eur. J. Mech. A/Solids 30, 571-583, 2011.
Filippi, M., Carrera, E., and Zenkour, A.M., “Static analyses of FGM beams by various theories and finite elements”, Compos. Part B 71, 1-9, 2015.
Giunta, G., Belouettar, S., and Carrera, E., “Analysis of FGM beams by means of classical and advanced theories”, Mech. Adv. Mater. Struct. 17, 622-635, 2010.
Hill, R., “A self-consistent mechanics of composite materials”, J. Mech. Phys. Solids 13(4), 213-222, 1965.
Jha, D. K., Kant, T., and Singh, R. K., “A critical review of recent research on functionally graded plates”, Compos. Struct. 96, 833-849, 2013.
Ke, L. L., Yang, J., and Kitipornchai, S., “Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams”, Compos. Struct. 92, 676-683, 2010a.
Ke, L. L., Yang, J., and Kitipornchai, S., “An analytical study on the nonlinear vibration of functionally graded beams”, Meccanica 45(6), 743-752, 2010b.
Koizumi, M., “Recent progress of functionally graded materials in Japan”, Ceram. Eng. Sci. Proc. 13(7-8), 333-347, 1992.
Koizumi, M., “FGM activities in Japan”, Compos. Part B 28(1-2), 1-4, 1997.
Lau, K. T., and Hui, D., “The revolutionary creation of new advanced materials-carbon nanotube composites”, Compos. Part B 33(4), 263-277, 2002.
Lewandowski, R., “Application of the Ritz method to the analysis of nonlinear free vibrations of beams”, J. Sound Vib. 114(1), 91-101, 1987.
Liew, K. M., Lei, Z. X., and Zhang, L.W., “Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review”, Compos. Struct. 120, 90-97, 2015a.
Liew, K. M., Xiang, P., and Zhang, L.W., “Mechanical properties and characteristics of microtubules: A review”, Compos. Struct. 123, 98-108, 2015b.
, C.F., Chen, W.Q., Xu, R.Q., and Lim, C.W., “Semi-analytical elasticity solutions for bi-directional functionally graded beams”, Int. J. Solids Struct. 45, 258-275, 2008.
Ma, L. S., and Lee, D. W., “Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading”, Eur. J. Mech. A/Solids 31(1), 13-20, 2012.
Pirbodaghi, T., Ahmadian, M. T., and Fesanghary, M., “On the homotopy analysis method for non-linear vibration of beams”, Mech. Res. Commun. 36(2), 143-148, 2009.
Qaisi, M. I., “Application of the harmonic balance principle to the nonlinear free vibration of beams”, Appl. Acoust. 40, 141-151, 1993.
Reissner, E., “On a certain mixed variational theorem and a proposed application”, Int. J. Numer. Methods Eng. 20(7), 1366-1368, 1984.
Reissner, E., “On a mixed variational theorem and on shear deformable plate theory”, Int. J. Numer. Methods Eng. 23(2), 193-198, 1986.
Salami, S. J., “Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets”, Physica E 76, 187-197, 2016.
Sarma, B. S., and Varadan, T. K., “Lagrange-type formulation for finite element analysis of non-linear beam vibrations”, J. Sound Vib. 86(1), 61-70, 1983.
Sarma, B. S., and Varadan, T. K., “Ritz finite element approach to nonlinear vibrations of beams”, Int. J. Numer. Methods Eng. 20(2), 353-367, 1984.
Sarma, B. S., Varadan, T. K., and Prathap, G., “On various formulations of large amplitude free vibrations of beams”, Comput. Struct. 29(6), 959-966, 1988.
Shen, H. S., Functionally graded materials: nonlinear analysis of plates and shells, CRC Press, Boca Raton, 2009a.
Shen, H. S., “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments”, Compos. Struct. 91, 9-19, 2009b.
Simsek, M., “Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method”, Int. J. Eng. Appl. Sci. 1(3), 1-11, 2009.
Simsek, M., “Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories”, Nucl. Eng. Des. 240(4), 697-705, 2010.
Wu, C. P., Chiu, K. H., and Wang, Y. M., “A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells”, CMC-Comput. Mater. Continua 8(2), 93-132, 2008.
Wu, C. P., Hong, Z. L., Wang, Y. M., “Geometrically nonlinear static analysis of an embedded multiwalled carbon nanotube and the van der Waals interaction”, J. Nanomech. Micromech. 7(4), 04017012, 2017.
Wu, C. P., Liu, Y. C., “A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells”, Compos. Struct. 147, 1-15, 2016.
Wu, C. P., Lai, W. W., “Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions”, Compos. Struct. 122, 390-404, 2015a.
Wu, C. P., Lai, W. W., “Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method”, Physica E 68, 8-21, 2015b.
Zhang, D. G., “Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory”, Compos. Struct. 100, 121-126, 2013.