| 研究生: |
江秉青 Jiang, Ping-Ching |
|---|---|
| 論文名稱: |
利用Fe-PDMS 複合薄膜應用於微流體晶片之方法與實驗 Fe-PDMS composite membrane for microfluidic chip applications |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 磁性材料微流元件 、微流體驅動 、Fe-PDMS 複合薄膜 、磁控幫浦 |
| 外文關鍵詞: | Fe-PDMS composite, magnetic micropump, magnetic microfluidic device, micro fluid actuation, liquid droplets driving, standing wave |
| 相關次數: | 點閱:147 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fe-PDMS 為一種混合PDMS(polydimethylsiloxane-聚二甲基矽氧烷)和鐵粉的複合材料,加入鐵的目的在於使其具有感磁力,當利用Fe-PDMS 製成輕薄的結構時利用外加磁場可使其產生型變,能作為微驅動器之材料。相對於利用矽或氮化矽材料製成之微驅動器而言,Fe-PDMS 的楊氏係數較小,在磁力驅動下能達到更大之型變量,同時PDMS 之物理及化學特性較穩定,生物兼容性良好,很適合應用於製作微流體控制元件。
本研究採用微機電製程中之黃光微影技術,將SU8 光阻於矽基
板上製成母模結構,再利用旋佈方式將Fe-PDMS 混合膠液製成薄膜,待膠膜固化成形後翻模,再與玻璃基板接合製成薄膜晶片,但在一連串製程之中,薄膜有時會因過薄而破裂,過厚又不利於驅動,而薄膜上之結構亦有尺度限制,過大面積的結構會因本身重量而塌陷,與基板沾結而使晶片無法使用,同時鐵粉的含量亦是被探討的參數,本研究在母模厚度150μm 之設定下,完整建立包含鐵粉含量比例(50%至80%之重量比例)、膜厚、結構尺寸(包含管型結構及幾何圖形結構)之製程測試參數,目的在提供日後設計薄膜上之結構時,可以確保各參數匹配下所製之薄膜能達到易驅動、不易破裂、不會因塌陷而影響接合基板之要求,而本研究亦利用參數測試之結果設計兩種Fe-PDMS 複合薄膜微流晶片,分別為複合薄膜蠕動式幫浦及複合震動薄膜液滴控制晶片,根據實驗結果,薄膜幫浦在精簡之設計下具有91.75μl/min 之最大流量,而震動薄膜雖受制於磁控平台之性能以致於現階段尚無法求證,但仍藉由理論之分析及數值模擬之結果檢視該設計概念之合理性與可行性。
Fe-PDMS is composed by suspending iron powder(~10μm)
in polydimethylsiloxane(PDMS). The mixture retains many
properties of pure PDMS, including moldability, elastic after cured, good adhesion to glass and silicon substrates. And the additivity of iron makes the composite can be magnetically actuated. Comparing with silicon or silicon nitrite based micro actuator, Fe-PDMS composite membrane can effect larger deformation. The large displacement capability of composite membrane is suitable for application in micro fluidic devices.
In this study, MEMS technology is used to fabricate all
microfluidic chips. And chip fabrication can be divided into three parts:SU-8 mold construction, Fe-PDMS membrane molding, membrane releasing and bonding with glass substrate. In series of fabrication, thinner composite will break easily when releasing from mold, but the thicker membrane will take disadvantage of actuating. Size of mold structures on membrane will affect bonding process, too. The weight ratio of iron particles in composite membrane is a parameter also discussed. Parameters of fabrication including weight ratio of iron (from 50% to 80%), thickness of membrane and size of mold
structures(channel and geometry)are completely tested under 150μm mold thickness. Trying to find a suitable combination of different parameters can make sure the composite membrane strong enough, actuated and fabricated easily. According the parameter test result, two applications on microfluidic chip are displayed: composite membrane peristaltic pump and liquid droplets driving vibration membrane chip.
The result of experiments shows the micro peristaltic pump with the best pumping efficiency at 91.75 μl/min, and the vibration membrane under a restriction of magnetic supply source can not verify the theory now. By numerical simulation and theoretical analysis shows the design of vibration membrane is reasonable and actualizable.
[1] Richard Feyman, “There is plenty of room at the bottom”,
http://www.zyvex.com/ nanotech/feynman.html, 1959
[2] A. Manz, N. Graber, H. M. Winder, Miniaturized total chemical analysis system a novel concept for chemical sensing, Sensors and Actuators, B1, 244–248, 1990
[3] S. J. Lee, S. Y. Lee, Micro total analysis system in biotechnology, Microboil. Biotechnol., Vol. 64, 289–299, 2004.
[4] D. J. Laser, J. G. Santiage. “A review of micropumps,” Journal of Micromechanics and Microengineering, 14 (2004), 35-64.
[5] M. Khoo, C. Liu. “Micro magnetic silicone elastomer membrane actuator,” Sensors and Actuators A 89 (2001), 259-266
[6] Judy JW, Muller RS, Zappe HH. Magnetic microactuation of polysilicon flexure structures. Journal of MEMS 1995;4:162-9.
[7] C. Liu, Development of surface micromachined magnetic actuators using electroplated permalloy, Mechatronics, vol.8, no. 5, Aug. 1998, pp.613-633.
[8] A. Hatch, A. E. Kamholz, G. Holman, P. Yager, K. F. Bhringer, “A ferrofluidicmagnetic micropump,”Journal of Microelectromechanical Systems, vol. 10, no. 2, 2001.
[9] H. Hartshorne, C. J. Backhouse, W. E. Lee, “Ferrofluid-based microchip pump and valve,” Sensors and Actuators B 99 (2004), 592-600.
[10] C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,”Journal of Microelectromechanical Systems, vol. 14, no. 1, 2005.
[11] S. McDonald, T. Pan, B. Ziaie, “A magnetically driven PDMS micropump with micro-ball valves. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, September 1-5 2004.
[12] T. Pan, E. Kai, M. Stay, V. Barocas, B. Ziaie, “A magnetically driven PDMS peristaltic micropump,” 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2004, 2639-2642.
[13] W. Wang, Z. Yao, J. C. Chen, and J. Fang, “Composite elastic magnet films with hard magnetic feature,” Journal of Micromechanics and Microengineering, 14, 1321-1327, 2004.
[14] Jonathan J. Nagel1, George Mikhail, Hongseok (Moses) Noh1, and Jeonghoi Koo, “Magnetically Actuated Micropumps Using an Fe-PDMS Composite Membrane,” Smart Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nanotechnology edited by Vijay K. Varadan, Proc. of SPIE Vol. 6172, 617213, 2006.
[15] Daniel, S., Chaudhury, M. K., and Chen, J. C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, ” Science, Vol. 291,633-636, 2001.
[16] Darsh T. Wasan, Alex D. Nikolov and Howard Brenner, “Fluid Dynamics : Droplets Speeding on Surfaces, ” Science, 26 January, Vol. 291. no. 5504, pp. 605 – 606, 2001
[17] S. Alzuaga, W. Daniau, J. F. Manceau, S. Ballandras and F. Bastien, “Displacement of Droplets on a Surface Using Ultrasonic Vibration, ” WCU 2003, Paris, September 7-10, 951-954, 2003
[18] S. Alzuaga, J. F. Manceau and F. Bastien, “Motion of Droplets on Solid Surface Using Acoustic Radiation Pressure, ” Journal of Sound and Vibration, 282, 151-162, 2005
[19] J. Bennes, S. Alzuaga, P. Chabe, G. Morain, F. Cherioux, J. F. Manceau and F. Bastien, “Action of Low Frequency Vibration on Liquid Droplets and Particles, ” Ultrasonics, 44, 497-502, 2006
[20] S. Alzuaga, S. Ballandras, F. Bastien, W. Daniau, B.
Gauthier-Manual, J. F. Manceau, B. Cretin, P. Vairac, V. Laude, A. Khelif and R. Duhamel, “A Large Scale X-Y Positioning and Localisation System of Liquid Droplet Using SAW on LiNbO3, ” in Proc. IEEE Ultrasonic Symposium, 1790-1793, 2003
[21] J. Scortesse, J. F. Manceau and F. Bastien, “Interaction Between a Liquid Layer and Vibrating Plates: Application to the Displacement of Liquid Droplets,” Journal of Sound and Vibration, 254, (5), pp.
927-938, 2002
[22] 宇、杰、?g、武、文元, “柔性膜式微型磁器的与仿真分析, ” Micronanoelectronic Technology, Vol. 45, No.6, pp.356-365, June 2008