| 研究生: |
周子翔 Chou, Zih-Siang |
|---|---|
| 論文名稱: |
以堆疊式鋯鈦酸鋇/二元氧化物結構為閘極介電層之五環素薄膜電晶體 Pentacene-based Thin Film Transistors With Stacked Barium Zirconate Titanate/Binary Oxide As The Gate Dielectrics |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 有機薄膜電晶體 、低操作電壓 、五環素 |
| 外文關鍵詞: | OTFT, low operation voltage, pentacene |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們準備了高品質的高介電係數溶液式BZT閘極介電層薄膜作為五環素有機薄膜電晶體,元件的特性表現出了好的臨界電壓(-1.1V), 次臨界擺幅(0.51 V/dec), 電流開關比(2.3x102), 載子遷移率(4.98cm2/V-1S-1)。更進一步討論,為了得到更好的元件特性,我們利用高介電係數HfO2與 BZT之雙層閘極介電層結構,這些元件展現了好的元件特性,例如低臨界電壓(-0.25V), 低次臨界擺幅(0.46 V/dec), 高電流開關比(103), 高載子遷移率(3.65cm2/V-1S-1 )以及低操作電壓,我們更詳細地對化學與物理特性進行分析,其中包括SEM, XRD, AFM分析。
綜上所述,我們已經成功地展示高品質溶液式BZT及HfO2雙層結構之閘極介電層並運用於有機薄膜電晶體,這項工作提供了很多優勢,如低臨界電壓、低次臨界擺幅、高電流開關比、高載子遷移率以及低操作電壓,這也說明了元件有著優秀的操作特性。
In this thesis, we prepared the high quality solution-processed high-κ Barium Zirconate Titanate (BZT) as gate dielectric for pentacene-based organic thin film transistor (OTFT) devices were demonstrated. The performance of the devices shows good threshold voltage(-1.1V), subthreshold swing(0.51 V/dec), current on/off ratio(2.3x102), mobility of 4.98cm2V-1S-1. Further, in order to get better performance of the devices, we utilized the double structure with high-κ HfO2 and BZT. These devices exhibited good performances, such as low threshold voltage(-0.25V), low subthreshold swing(0.46 V/dec), high current on/off ratio(103), high mobility of 3.65cm2V-1S-1 and operate at low gate voltage. We analyzed in detail with chemical and physical characteristics including SEM, XRD, XPS, AFM.
In summary, we have been successfully demonstrated high quality double structure with solution-processed oxide(BZT) and HfO2 applied as gate dielectric on OTFT. This work provides a lot of advantages, such as low threshold voltage, low subthreshold swing, high current on/off ratio, high mobility and operate at low gate voltage which indicates good performance of devices.
【1】 C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51, 913 (1987).
【2】 Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chem. Rev. 109 (11), pp 5868–5923, (2009).
【3】 V. Subramanian, J.M.J. Frechet, P.C. Chang, Processes, and Devices, Proceeding of the IEEE, Volume: 93, Issue: 7 (2005).
【4】 Z.T. Zhu, J.T. Mason, R.D., and .G. Malliaras, Humidity sensors based on pentacene thin-film transistors, Appl. Phys. Lett. 81, 4643 (2002).
【5】 A. Tsumura, H. Koezuka, and T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film, Appl. Phys. Lett. 49, 1210 (1986).
【6】 H.Koezuka, A.Tsumura, T.Ando, Field-effect transistor with polythiophene thin film, Volume 18, Issues 1–3, Pages 699-704, (1987).
【7】 L. Zhoua, A. Wanga, S.C. Wu, J. S., S. Park, T. N. Jackson, All-organic active matrix flexible display, Appl. Phys. Lett. 88, (2006)
【8】 A. Benor, A.H. Veit, W.D. Knipp., Electrical stability of pentacene thin film transistors., Organic Electronics, Volume 8, Issue 6, (2007).
【9】 C. D. Dimitrakopoulos, D. J. Mascaro., Organic thin-film transistors: A review of recent advances, IBM Journal of Research and Development, Volume: 45, Issue: 1 ,(2001).
【10】 黃桂武,工研院材化所“軟性電子主動元件材料技術發展現況”,材料世界網(2008).
【11】 J.. Hong1, A.Y. Park1, S. Lee1, J. Kang2, N. Shin, and D. Y. Yoon, Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors, Appl. Phys. Lett. 92, , (2008).
【12】 D.J. Gundlach, Li Li Jia, T.N. Jackson, Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes, IEEE Electron Device Letters, Volume: 22, Issue: 12(2001)
【13】 https://en.wikipedia.org/wiki/Perovskite_(structure)
【14】 C.Y. Wei, S.H. Kuo, Y.M. Hung, High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator, IEEE Electron Device Letters, Volume 32 Issue 1 (2011).
【15】 Ben,G.Streetman and Sanjay Banerjee, “Solid state electronicdevices”, Prentice Hall (2000)
【16】 蔡孟辰,陳敏璋,“高介電常數材料金氧半元件之發展”,奈米通訊(2014).
【17】 J. Tersoff. Phys., Schottky Barrier Heights and the Continuum of Gap States, Phys. Rev. Lett. , 52, 465, (1984) .
【18】 C.Y. Wei, S.H. Kuo, Y.M. Hung, W.C. , High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator , IEEE ELECTRON DEVICE LETTERS, Volume 32, Issue 1, Pages 90-92.(2011).
【19】 https://www.ch.ntu.edu.tw/~rsliu/teaching/molpdf-liu/Group01_Report.pdf
【20】 https://en.wikipedia.org/wiki/Pentacene
【21】 L.Sebastian, G.Weiser, H.Bässler, Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption, Chemical Physics, Volume 61, Issue 1-2(1981)
【22】 S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Temperature-independent transport in high-mobility pentacene transistors, Appl. Phys. Lett. 72, 1854 (1998).
【23】 https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=pentacene
【24】 S. Kaciulis, L. Pandolfi1, R. White, Depth profiling of thin films of binary metal oxides, Wiley InterScience, 36: 845–848(2004)
【25】 M. Oikawa, K. Toda, Preparation of Pb(Zr,Ti)O3 thin films by an electron beam evaporation technique, Appl. Phys. Lett. 29, 491 (1976)
【26】 B. D. Yao, Y. F. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation, Appl. Phys. Lett. 81, 757 (2002)
【27】 Klavs F. Jensen, Chemical Vapor Deposition, Microelectronics Processing(1989)
【28】 M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, Volume 409, Issue 1,(2002)
【29】 D.d R. Klein, Organic Chemistry, 1rd Edition, Wiley(2012)
【30】 https://www.iapp.de/orgworld.de/?Basics:What_are_organic_semiconductors
【31】 L. Li , H. Marien , J. Genoe ; M. Steyaert , P. Heremans, Compact Model for Organic Thin-Film Transistor, IEEE Electron Device Letters, Volume 31, Issue 3, (2010 )
【32】 D. A. Neamen, Semiconductor Physics And Devices: Basic Principles 4th Edition(2012)
【33】 H. Klauk, Organic thin-film transistors, Chemical Society Reviews(2009)
【34】 C. D. Dimitrakopoulos, P. R. L. Malenfant, Organic Thin Film Transistors for Large Area Electronics, Advanced materials reviews(2002)
【35】 C. Westermeier, A. Cernescu, S. Amarie, C. Liewald, F. Keilmann, B. Nickel, Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging, Nature communications, Volume 5(2014)
【36】 L.F. Drummy, D.C. Martin, Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films, Advanced materials, Volume17, Issue 7, Pages 903(2005)
【37】 D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, Pentacene Organic Thin-Film Transistors—Molecular Ordering and Mobility, IEEE ELECTRON DEVICE LETTERS, Volume 18, Issue 3, Pages 87-89(1997)
校內:2023-07-01公開