簡易檢索 / 詳目顯示

研究生: 薛博元
Hsueh, Po-Yuan
論文名稱: 探討輪胎製造商有限人力資源下的適應性管制圖經濟設計個案研究
A Case Study of Economic Design of Adaptive Control Chart with Short-term Manpower Shortage in the Tire Manufacturing Industry
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 52
中文關鍵詞: 品質管制適應性管制圖人力限制經濟設計成本函數
外文關鍵詞: Quality control, Adaptive control chart, Manpower restriction, Economic design, Cost function
相關次數: 點閱:160下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輪胎產業因應各種車廠車型開發需求,開發出配合各式車型、尺寸花紋輪胎以符合不同性能與磨耗需求調配出多種配方與樣式需求,例如電動車節能出需要低滾動阻力的節能配方,性能車款需要高抓地力的性能配方。因規格花紋的多樣性導致龐大數量的驗證計畫,即是導致檢驗成本高居不下的主要原因。為了降低抽檢造成之成本,本研究將從成本的角度下探討在符合經濟效益的前提下能夠及時反應出製程發生變異的抽檢方法,Duncan首先將成本的概念加入管制圖的設計,發表X經濟設計管制圖,經濟設計的基本概念為調整管制圖中的抽樣間隔長度、樣本大小、管制界限,三個重要決策變數以獲得最低之總成本。適應性管制圖是將這些決策變數由定值調整為隨著前一次製程觀測資料進行變動微調。而經濟設計是在長期的架構下重新設計管制圖,短期內若對管制圖的設計做大幅度的改變可能會導致成本的提升。
    本研究建構一套可調整抽樣間隔的設定方法,當短期內監控管制圖的人力資源有限,同時監控多張管制圖的情況下,該如何針對抽樣間隔長度做調整。損失成本函數除參考Bai 和 Lee 學者的經濟設計,本研究加入工廠實際運作流程,將成本分為五項(1)製程因警報響起而產生之等待處理的單位時間成本 (2)製程等待處理及消除可歸屬原因之單位時間成本 (3)製程在失控狀態下之單位時間生產成本 (4)預防與鑑定之成本 (5)外部失敗成本
    透過適應性與經濟設計方式建構數學模型,期望能降低總成本並維持製程偵測變異的效率,成本函數進行二次微分,證明此模型為凸函數具有極小值。並在總成本最小化的目標下,找出最適抽樣間隔長度,最後透過實際案例驗證,針對重要的參數進行敏感度分析,了解不同參數對成本函數的影響程度。

    The tire industry usually cooperates with various car manufacturers, to meet different performance and size requirement. Such as electric vehicles require low rolling resistance and energy saving solutions. High-performance racecars require high-grip performance solutions. Because of the diversity of specifications and patterns, a huge number of verification projects are the main reason for the high cost of inspection. In order to reduce the cost caused by sampling inspection, this dissertation will explore the sampling inspection method that can reflect the variation of the process in time under the premise of economic benefit from the perspective of cost.

    In order to reduce the cost of sampling without affecting the sensitivity of detecting process. This dissertation use adaptive economic design control chart to construct the sampling interval length of the control chart. This model will combine the concepts of economic design and adaptive design, and add labor cost considerations to minimize the expected total cost of the statistical process control program. The conclusion of the dissertation show that by appropriately adjusting the combination of the length of the sampling interval, the expected total cost per unit time can be reduced. Sensitivity analysis is used to evaluate how parameters affect the total cost per unit time.

    摘要 I 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 研究流程 3 第二章 文獻回顧 4 2-1 修華特管制圖(Shewhart Control Chart) 5 2-2 適應性管制圖(Adaptive Control Chart) 6 2-3 經濟設計(Economic Design) 8 2-4 人力資源(Human Resources) 12 2-5 輪胎製程(Tire Manufacturing) 14 第三章 研究方法 18 3-1 研究問題描述 18 3-2 研究假設 20 3-3 符號定義 21 3-4 研究模型建構 22 3-5 小結 30 第四章 數值驗證與敏感度分析 32 4-1 案例討論 32 4-2 參數關係探討 35 4-3 敏感度分析 39 第五章 結論與建議 46 5-1 研究貢獻 46 5-2 未來研究方向 47 參考文獻 48

    [1].張凱鈞(2019) 受限於短期人力短缺下之X-bar管制圖之適應性經濟設計.國立成功大學碩士論文.
    [2].Arnold, J. C. (1970). A markovian sampling policy applied to water quality onitoring of streams. Biometrics, 26(4), 739-747
    [3].Arnold, J. C., Reynolds, M. R., Jr., Sawalapurkarpowers, U. (1993). Control charts with variable sample size and variable interval size. Proceedings, Section on Quality and Productivity. American Statistical Association, 138-143.
    [4].Bai, D. S. & Lee, K. T. (1998). An economic design of variable sampling interval x- bar control charts. International Journal of Production Economics, 54(1), 57- 64.
    [5].Chiu, W. K. (1974). The economic design of cusum charts for controlling normal means. Journal of the Royal Statistical Society, 23(3), 420-433.
    [6].Chiu, W. K. (1975). Economic design of attribute control charts. Technometrics, 17(1), 81-87.
    [7].Chiu, W. C. (2015). Economic-statistical design of EWMA control charts based on Taguchi's loss function. Communications in Statistics-Simulation and Computation, 44(1), 137-153.
    [8].Crigler, J. R., & Arnold, J. C. (1986). Economically optimal markovian sampling policies for process monitoring. Communications in Statistics-Theory and Methods, 15(6), 1773-1803.
    [9].Costa, A. F. (1999). Joint X and R charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 31(4), 387.
    [10].Duncan, A. J. (1956). The economic design of X charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228-242.
    [11].Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
    [12].De Magalhães, M. S., Epprecht, E. K., & Costa, A. F. (2001). Economic design of a Vp X chart. International Journal of Production Economics, 74(1-3), 191-200.
    [13].Girshick, M. A. & Rubin, H. (1952). A Bayes’ approach to a quality control model. Annals of Mathematical Statistics, 23, 114-125.
    [14].Giba, R. J. (1971). Performance Characteristics of Glass Fiber Reinforced Plastic Instrument Panel Supports (No. 710025). SAE Technical Paper.
    [15].Hui, Y. V., & Jensen, D. R. (1980). Markovian Time-Delay Sampling Policies. ” Technical Report Q-5, Virginia Polytechnic Institute and State University, Dept. of Statistics.
    [16].Ho, C.,& Case, K. E. (1994). The economically-based EWMA control chart. International Journal of Production Research, 32(9), 2179-2186.
    [17].Koo, T. Y. & Case, K. E. (1990). Economic design x-bar control charts for using in monitoring continuous flow processes. International Journal of Production Research, 28(1), 2001-2011.
    [18].Lorenzen, T. J.,& Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
    [19].Niaki, S. T. A.,Ershadi, M. J. (2012). A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts : a Taguchi loss approach. International Journal of Systems Science, 43(12), 2275-2287.
    [20].Naderi, M. H., Moghadam, M. B., & Seif, A. (2018). Economic statistical design of the T 2 control chart under the Weibull shock model with multiple assignable causes. Journal of Statistical Computation and Simulation, 88(1), 1-27.
    [21].Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115.
    [22].Park, C., Lee, J.,& Kim, Y. (2004). Economic design of a variable sampling rate EWMA chart. IIE Transactions, 36(5), 387-399.
    [23].Roberts, S. W. (1959). Control chart tests based on geometric moving-averages. Technometrics, 1(1), 239-250.
    [24].Reynolds, M. R., Jr., Amin, R. W., Arnold, J. C.,Nachlas, J. A. (1988). X-bar charts with variable sampling intervals. Technometrics, 30(2), 181-192.
    [25].Reynolds, M. R., Jr. (1996). Variable-sampling-interval control charts with sampling at fixed times. IIE Transactions, 28(1), 497-510.
    [26].Salmasnia, A., Abdzadeh, B., Namdar, M. (2017). A joint design of production run length, maintenance policy and control chart with multiple assignable causes. Journal of Manufacturing System, 42(1), 44-56.
    [27].Sabahno, H., Castagliola, P., & Amiri, A. (2020). A variable parameters multivariate control chart for simultaneous monitoring of the process mean and variability with measurement errors. Quality and Reliability Engineering International, 36(4), 1161-1196.
    [28].Tagaras, G., & Lee, H. L. (1988). Economic design of control charts with different control limits for different assignable causes. Management Science, 34(11), 1347-1366.
    [29].Ugaz, W, Sanchez, I., Alonso, A. M. (2017). Adaptive EWMA control charts withtime-varying smoothing parameter. International Journal of Advanced Manufacturing Technology, 93(9-12), 3847-3858.
    [30].Saniga, E. M. (1977). Joint economically optimal design of X and R control charts. Management Science, 24(4), 420-431.
    [31].Saccucci, M. S., Amin, R. W., Lucas, J. M. (1992). Exponentially weighted moving average control schemes with variable sampling intervals. Communications in Statistics-Simulation and Computation. 21(3), 627-657.
    [32].Smeach, S. C., & Jernigan, R. W. (1977). Further Aspects of a Markovian Sampling Policy for Water Quality Monitoring. Biometrics, 33(1), 41–46.
    [33].Taylor, H. M. (1968). The economic design of cumulative sum control charts. Technometrics, 10(3), 479-488.
    [34].Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408-409..
    [35].Ohta, H., & Rahim, M. A. (1997). A dynamic economic model for an X-control chart design. IIE transactions, 29(6), 481-486.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE