簡易檢索 / 詳目顯示

研究生: 黃靖翰
Hwang, Ching-Hang
論文名稱: 利用半導體雷射非線性週期一動態處理光載微波系統振幅鍵移訊號以及相位鍵移訊號
Nonlinear Period-One Dynamics Of Semiconductor Lasers For Amplitude-Shift-Keying And Phase-Shift-Keying Signal Processing In Radio-over-Fiber Links
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 光載微波系統光注入系統調制格式轉換微波放大
外文關鍵詞: Radio-over-Fiber (RoF), Period-one Dynamics, Modulation Format Conversion, Photonic Microwave Amplification
相關次數: 點閱:151下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文是利用光注入半導體雷射產生非線性週期一動態,並利用此動態進行光載振幅鍵移以及光載相位鍵移微波訊號處理。
      針對光載振幅鍵移微波訊號,僅需一半導體雷射作為主要元件,藉由光注入系統即可將光載振幅鍵移微波訊號轉為光載相位鍵移微波訊號,可應用於網路通訊上訊號調制格式的轉換,減少傳統上轉換過程的設備成本與複雜度,以此為契機便開始探討各種可操作變因(如光注入強度、主副雷射頻率差、微波調制深度、振幅鍵移調制深度……等)對於輸出結果的影響。
      而光載相位鍵移微波訊號,雖無法利用光注入系統的機制進行訊號調制格式轉換為振幅微波訊號,但其進入光注入系統之後不僅可維持原本相位調制深度,且因微波放大而提高了訊雜比,並在模擬通道具有白高斯雜訊的情況下,減少雜訊對於訊號的影響,使得無線通訊接收端的解調減少誤碼率的發生,因此探討各種可操作變因(如光注入強度、主副雷射頻率差、微波調制深度……等)對於輸出結果的影響。

    This thesis proposes to analyze the ASK and PSK signal processing in radio over fiber (RoF) links using nonlinear period-one dynamics of semiconductor lasers. In terms of ASK-RoF signal, after inputting to the laser diode, the ASK-RoF signal would be converted to be PSK-RoF signal. On the other hand, there is no PSK-to-ASK modulation format conversion in this study.

    摘要……………………………………………………………………………………i ABSTRACT…………………………………………………………………………..ii 誌謝……………………………………………………………………………………vii 目錄……………………………………………………………………………………viii 圖目錄…………………………………………………………………………………xi 第一章 前言………………………..…………………………………………….…1 1.1 研究背景………………….………………………………………………….…1 1.2 研究動機……………….…………………………………………………….…4   1.2.1 調制格式轉換(Modulation Format Conversion) ………………………4   1.2.2 光微波放大(Photonic Microwave Amplifier) ………………...………..6   1.2.3 光注入系統(Optical Injected System) …………………………….....…8 1.3論文架構…………………………………………………………………...…..…8 第二章 半導體雷射動態之非線性動態系統……………………………………..9 2.1 雷射基本介紹與理論模型………………………………………………...…..9    2.1.1 雷射基本介紹……………………………………………….…...…9    2.1.2 光注入理論模型……………………………………………………10 2.2 靜態分析模型……………………………………………………….………..12 2.3 非線性動態分析…………………………………………………….……..…14    2.3.1 穩定鎖頻………………………………………………………....…14    2.3.2 週期一…………………………………………………………..…..14    2.3.3 週期二………………………………………………………………15    2.3.4 混沌…………………………………………………………………16    2.3.5 地圖分析……………………………………………………………16 2.4 週期一注入條件與輸出光譜以及微波譜分析………………………….….17    2.4.1 模擬系統架構……………………………………………………...17    2.4.2 注入強度ξ_i對於微波頻率與強度分析…………………………….18    2.4.3 主副雷射頻率差f_i對於微波頻率與強度分析…………………….20 2.5 以振幅調製雷射光注入副雷射於週期一動態條件之分析………………..22    2.5.1 振幅調製雷射光注入副雷射的理論模型………………………...22    2.5.2 模擬系統架構……………………………………………………...23    2.5.3 調制頻率f_m對於輸出微波頻率分析……………………………...23    2.5.4 調制深度m_i對於輸出微波頻率分析……………………………...27 2-6 結論……………………………………………………………………….......32 第三章 光載微波振幅鍵移訊號分析……………………………………………33 3.1 光載純微波訊號分析………………………………………………………...33    3.1.1 輸入微波調製深度m_i對於輸出微波功率P_o之關係分析………....33    3.1.2 輸入微波調製深度m_i對於輸出微波相位關係之分析…………....36 3.2 光載微波振幅鍵移訊號分析…………………………………………………38    3.2.1 光載微波振幅鍵移訊號的理論數學模型………………………….38    3.2.2 模擬系統架構……………………………………………………….39    3.2.3 微波調製深度m_i對於輸出相位ϕ_o訊號分析……………………....39    3.2.4 ASK訊號調製深度對於輸出訊號分析…………………………....49    3.2.5 ASK訊號位元速率對於輸出訊號分析……………………………54 3.3 結論…………………………………………………………………………….57 第四章 光載微波相位鍵移訊號動態分析……………………………………….58 4.1 光載純微波訊號分析…………………………………………………………58    4.1.1 微波調製相位ϕ_i對於輸出微波功率P_o分析………….……………58    4.1.2 微波調製相位ϕ_i對於輸出微波相位ϕ_o分析………………………61 4.2 光載微波相位鍵移訊號分析…………………………………………………63    4.2.1 光載微波相位鍵移訊號的理論模型………………………………63    4.2.2 模擬系統架構………………………………………………………64    4.2.3 微波調製深度m_i對於輸出相位訊號分析………….……………..65 4.3 加成性白高斯雜訊對於輸出相位訊號分析………………………………...70    4.3.1 微波訊號上加成性白高斯雜訊對於輸出相位訊號分析…………70    4.3.2 光訊號上加性白成高斯雜訊對於輸出相位訊號分析……………74 4.4 結論……………………………………………………….……………………77 第五章 總結……………………………………………………………………….78 參考文獻………………………………………………………………………….....80

    [1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020.
    [2] Xavier N.Fernando,’Radio Over Fiber For Wireless Communications From Fundamental Advanced Topics’ ,2014
    [3] HongBin Jiang. "Based on the rf RoF Technology in the Property of the Wireless Network.", 2nd International Conference on Consumer Electronics, Communications and Networks,2012
    [4] Jun-Hyuk Seo. " Remote Frequency Conversion Using SOA and EAM for 60 GHz Bi-Directional Radio-on-Fiber Systems."(2006)
    [5] R.E.Ziemer ,W.H.Tranter,”Principle of communications Systems , Modulation,and Noise.” third edition,pp.473-480.
    [6] Leon W.Couch II,”Digital and analog communication Systems.” sixth editionpp.490-498
    [7] Qingjiang Chang, Tong Ye ,and Yikai Su”Generation of optical carrier suppressed-differentail phase shift keying format using one dual-parallel Mach-Zehnder modulator in radio over fiber systems,” Optics express Vol. 16 (2008): pp.10421-10426..
    [8] M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett., vol. 30, no. 25, pp. 2157-2158, 1994.
    [9] R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,”IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 218-220, 1995.
    [10] S. Xiao and A. M. Weiner, “Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA),”IEEEPhoton.Technol.Lett.,vol.17,no.7,pp.1522–1524,2005.
    [11] D. S. Glassner, M. Y. Frankel, and R. D. Esman, “Reduced loss microwave fiber optic links by intracavity modulation and carrier suppression,”IEEE MicrowaveGuided WaveLett.,vol.7,no.3,pp.57–59,1997.
    [12] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performancein fiber-radio links,” IEEE Trans.Microwave Theory Tech.,vol.54,no.5,pp.2181–2187,2006.
    [13] K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,”Electron. Lett., vol. 30, no. 23, pp. 1965-1966, 1994.
    [14] S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett., vol. 36, no. 11, pp. 944-946, 2000.
    [15] Liu, Jia-Ming, How-Foo Chen, and Shuo Tang. "Dynamics and synchronization of semiconductor lasers for chaotic optical communications."Digital Communications Using Chaos and Nonlinear Dynamics. Springer New York, 2006. 285-340.
    [16] Chan, Sze-Chun, Sheng-Kwang Hwang, and Jia-Ming Liu. "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser."Optics express15.22 (2007): 14921-14935..
    [17] Y.H. Hung, “Nonlinear period –one dynamics of optically injected semiconductor lasers for optical signal processing in radio-over-fiber links,” pp.18-34,2016

    下載圖示 校內:2022-07-10公開
    校外:2022-07-10公開
    QR CODE