| 研究生: |
王婉寧 Wang, Wan-Ning |
|---|---|
| 論文名稱: |
氧化鎂及氧化釔添加對鈦酸鋇結構與介電性質之影響 Structure and Dielectric Properties of BaTiO3 Doped with MgO and Y2O3 |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 鈦酸鋇 、X8R 、殼-核結構 、介電常數 |
| 外文關鍵詞: | barium titanate, X8R, core-shell structure, dielectric constant |
| 相關次數: | 點閱:83 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鋇具有良好的介電材性質,因此在工業上廣泛應用於被動元件、熱敏電阻器、溫度感測器等多種高容電子產品。為了使製成的電子元件能符合工業規格需求 (Y5V、X8R、X9R 等),通常在鈦酸鋇中加入添加物,進行離子置換以改變介電常數變化率隨溫度改變的特性。本研究以鈦酸鋇為基礎,選擇氧化釔 (1.0 mol%, 3.0 mol%) 及氧化鎂 (0.5 mol%, 1.0 mol%) 作為添加,瞭解釔離子進入 Ba位置及鎂離子進入 Ti 位置後對於微結構、晶體結構與介電性質之影響,並以在較低溫獲得高緻密度且小晶粒之殼-核結構之陶瓷體為目的。
實驗結果顯示,單一添加氧化釔能抑制晶粒成長,少量添加會促進鈦酸鋇燒結收縮,當添加量提高為 3.0 mol% 會轉變為抑制燒結。單一添加氧化鎂則能促進鈦酸鋇燒結收縮和抑制晶粒成長,並獲得較平坦的溫度-電容曲線 (TCC)。透過晶格計算得知,鎂離子進入 Ti 位置後,單位晶格的 a 軸伸長、c 軸縮短,正方性下降。當氧化釔添加量從 1.0 mol% 增加為 3.0 mol% 時,部分的釔離子會取代 Ti 位置,或在晶界處析出形成 Y2Ti2O7 二次相,亦造成正方性下降。
在共添加系統中,0.5Mg1Y、0.5Mg3Y 和 1Mg1Y 樣品在 1150°C 持溫 3 小時,獲得相對密度 90 % 以上的燒結體,0.5Mg3Y 樣品的晶粒大小約在 0.7 μm - 1.0 μm 之間,由 TEM 圖中可證明,其燒結體具有殼-核結構,其中 0.5Mg3Y 陶瓷體之電容-溫度曲線符合工業之規格 (X8R)。
Due to the great performance of dielectric properties, barium titanate was used in great number of high-K capacitor products, such as passive devices, thermistors, and temperature sensors. To make electric device achieve the industrial specifications (Y5V, X8R, X9R, etc), we usually added additives into the barium titanate proceeding ion exchange to adjust the dielectric constant with temperature. The core-shell structure was obtained by Y2O3 and MgO doped into BaTiO3-based material. In this study, we investigated the microstructure, crystal structure and dielectric properties.
Doping Y2O3 can suppress grain growth of BaTiO3 bulk. The addition of 1.0 mol% Y2O3 into BaTiO3 can promote its sintering shrinkage. However, the sintering shrinkage was suppressed when amount of Y2O3 is 3.0 mol%. Doping MgO can enhance sintering shrinkage and suppress grain growth of BaTiO3 bulk, and acquire a flatter TCC curve. The addition of 3.0 mol% Y2O3 can exceed the solubility of A-sites. The tetragonality decreased as the amount of Y2O3 and MgO increased.
The bulk density of 0.5Mg1Y, 0.5Mg3Y, and 1Mg1Y specimens sintered at 1150°C/3h was more than 90%, and the grain size of 0.5Mg3Y was between 0.7 μm - 1.0 μm. The TCC curve of 0.5Mg3Y bulk when sintered at 1150°C/3h could achieve X8R specification.
1. A. J. Moulson and J. M. Herbert, Electroceramics : Materials, Properties, and Applications, Chapman and Hall, New York, 1990.
2. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
3. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, 1976.
4. L. C. Dufour, C. Monty, and G. P. Ervas., Surface and Interfaces of Ceramic Materials, 521-533, Kuwer Academic, Bosten, 1989.
5. R. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.
E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3-PbTiO3 Ceramics,” Jpn. J. Appl. Phys., 40 [10], 5999-6002, 2001.
6. Y. S. Jung, E. S. Na, U. Paik, J. Lee, and J. Kim, “A Study on the Phase Transition and Characteristics of Rare Earth Elements Doped BaTiO3,” Materials Research Bulletin 37, 1633-1640, 2002.
7. K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis,” Jpn. J. Appl. Phys., 48, 2009.
8. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato,Y. Iguchi, and T. Okuda, “The Effect of Rare-earth (La, Sm, Dy, Ho and Er) and Mg on the Microstructure in BaTiO3,” J. Euro. Ceram. Soc., 19, 1999, 1043-1046.
9. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jpn. J. Appl. Phys., 46, 2007, 6999-7004.
10. A. Kirianov, T. Hagiwara, H. Kishi, and H. Ohsato, “Effect of Ho/Mg Ratio on Formation of Core-shell Structure in BaTiO3 and on Dielectric Properties of BaTiO3 Ceramics,” Jpn. J. Appl. Phys., 41, 2002, 6934-6937.
11. J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics.” J. Am. Ceram. Soc., 82 [5], 1345-48, 1999.
12. D. Makovec, Z. Samardzija, and M. Drofenik, “Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3,” J. Am. Ceram. Soc., 87 [7] 1324-1329, 2004.
13. Y. H. Song, J. H. Hwang and Y. H. Han, “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3,” Jpn. J. of Appl. Phys., 44, 2005, 1310-1313.
14. M. H. Lin, H. Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3, ” Materials Science and Engineering A335, 2002, 101-108.
15. J. H. Kim, S. H. Yoon, and Y. H. Han, “Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3,” J. Euro. Ceram. Soc., 2007, 1113-1116.
16. W. C. Yang, C. T. Hu, I. N. Lin, “Effect of Y2O3/MgO Co-doping on the Electrical Properties of Base-Metal-Electroded BaTiO3 Materials,” J. Euro. Ceram. Soc., 24, 2004, 1479-1483.
17. F. A. Kroger and H. J. Vink, “Solid State Physics.” eds. F. Seitz and D. Turnbull, Academic Press, New York, 1956.
18. J. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3,” Jpn. J. Appl. Phys., 43, 2004, 5373-5377.
19. J. H. Hwang, S. K. Choi, and Y. H. Han, “Dielectric Properties of BaTiO3 Codoped with Er2O3 and MgO,” Jpn. J. Appl. Phys., 40, 2001.
20. M. F. Ashby, “A First Report On Sintering Diagrams,” Acta Metal., 22, 275-289, 1974.
21. R. L. Coble, “Sintering Crystalline Solids : Ⅱ Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, 1961.
22. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., 225, 1996.
23. 果世駒,粉末燒結理論,北京,2002。
24. Cheng H-F et al. ibid, 1993,76 : 827
25. Hennings D F K et al. ibid, 1987, 70 :23
26. R. J. Brook, High Tech. Ceramics: Proceedings of The World Congress on High Tech Ceramics, Ed. By P. Vincenzini, Amsterdam, 757-761, 1987.
27. M. T. Buscaglia, V. Buscaglia, and M. Viviani, “Atomistic Simulation of Dopant Incorporation in Barium Titanate,” J. Am. Ceram. Soc., 84 [2], 376-84, 2001.
28. G. V. Lewis and C. R. A. Catlow, “PTCR Effect in BaTiO3,” J . Am. Ceram. Soc., 68 [l0], 555-58, 1985.
29. T. Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” J. Am. Ceram. Soc., 83 [1], 107-12, 2000.
30. S. T. Bae, D. K. Yim, and K. S. Hong, “Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO-Doped BaTiO3,” J. Appl. Ceram. Technol., 679-686, 2009.
31. H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato and T. Okuda, “The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-Shell Structure in BaTiO3,” Jpn. J. Appl. Phys., 36, 1997.
32. S. C. Jeon, C. S. Lee, and S. J. L. Kang, “The Mechanism of Core-Shell Structure Formation during Sintering of BaTiO3-Based Ceramics,” J. Am. Ceram. Soc., 1-4, 2012.
33. S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor- (Niobium) and Acceptor- (Magnesium) Doped Barium Titanate,” J. Am. Ceram. Soc., 86 [1], 88-92, 2003.
34. S. H. Yoon, J. H. Lee, and D. Y. Kim, “Core-Shell Structure of Acceptor-Rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., 85, [12], 3111-13, 2002.
35. E. Boucher, B. Guiffard, L. Lebrun, and D. Guyomar, “Effects of Zr/Ti Ratio on Structural, Dielectric and Piezoelectric Properties of Mn- and (Mn, F) - Doped Lead Zirconate Titanate Ceramics,” Ceram. Int., 32 [5], 479-485, 2006.
36. 何欣宜,二階段燒結法製鋇為晶粒(Ba,Ca)(Ti,Zr)O3系統的顯微結構與介電性質,國立成功大學資源工程研究所碩士論文,民國一百年。
37. G. Arlt, D. Hennings, and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [4], 1619-1625, 1985.
校內:2017-08-14公開