簡易檢索 / 詳目顯示

研究生: 屈岳杰
Chu, Yueh-Chieh
論文名稱: 鑽石與石墨烯材料的合成、分析與應用
Synthesis, Characterization and Applications of Diamond and Graphene Based Materials
指導教授: 曾永華
Tzeng, Yonhua
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 101
中文關鍵詞: 微波電漿輔助氣相沉積超奈米鑽石偏壓成核微波電漿輔助氣相沉積表面增強拉曼石墨烯
外文關鍵詞: Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD), Ultrananocrystalline Diamond(UNCD), Bias-Enhanced Nucleation and Growth (BEN-BEG), Surface-Enhanced Raman Spectroscopy(SERS), Graphene
相關次數: 點閱:155下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,第一部分探討微波電漿輔助氣相沉積超奈米鑽石薄膜在厚度約10奈米金屬鎢與矽基板上的成長機制與晶格方向關係,金屬鎢與碳材形成(001)面晶相碳化鎢(WC),此中間層直接增加鑽石的種晶(seeding)吸附性與均勻性。另外,(001)面晶相碳化鎢也增進奈米鑽石在(111)面上的成長方向,產生有序的鑽石晶格與緻密薄膜品質。經由系統性穿透式電子顯微鏡的分析發現有使用鎢金屬的超奈米鑽石薄膜,可獲得較高的成核密度與結晶性佳的超奈米鑽石薄膜。
    另外,使用偏壓成核微波電漿輔助氣相沉積方式來成長奈米鑽石薄膜,在定電流偏壓模式下,電流與溫度參數影響奈米鑽石薄膜形貌,在定電流320mA偏壓下與8000C基板溫度可生成厚度約600奈米柱狀結構之奈米鑽石薄膜,高深寬比可應用於場發射元件及表面增強拉曼生物分子檢測使用。另外,定電流400mA偏壓下與9000C基板溫度之參數可生成較小深寬比奈米柱狀結構之鑽石薄膜。定電壓部分,使用-350V偏壓模式下,可成長出緻密與均勻性佳的奈米鑽石薄膜。利用拉曼頻譜儀與穿透式電子顯微鏡的分析來檢測鑽石薄膜內鍵結結構、晶格方向及與矽基板之磊晶關係。
    第二部分,探討在1-3%甲烷與20%氮氣摻雜奈米鑽石薄膜成長參數下,鑽石之表面形貌與導電度,甲烷濃度提升亦增加導電度。在3%甲烷與20%氮摻雜成長出類多層石墨烯包覆奈米鑽石之結構,類多層石墨烯結構使得薄膜導電度顯著提升。由於奈米鑽石同時具有化學惰性特質,本文示範三明治結構(奈米鑽石-氮摻雜奈米鑽石-奈米鑽石)電阻式加熱器包覆應用於生醫手術刀,可增加器材的使用壽命。另外,高導電度的氮摻雜奈米鑽石成功地應用在鋰電池石墨陽極電極,包覆性的結構減少電池內電阻值與較佳的化學抵抗特性成功提升電池高容量的生命週期。
    第三部分則是使用熱氣相化學沉積法成長二維材料石墨烯,不同於連續狀石墨烯薄膜,此成長方向形成枝葉狀,在CH4/H2低壓製程環境下,穩定的熱平衡條件下形成具有單層單區域(domain)及高長寬比石墨烯薄膜,此特性可作為低啟動電壓之石墨烯場發射元件。另外,利用背電極場效電晶體結構來量測載子遷移率,枝葉狀石墨烯可獲得高達9200cm2/Vs的電洞遷移率。在光響應特性上,在大於1mV以上之偏壓,枝葉狀石墨烯呈現負光電導特性,源於熱載子散射造成光電流下降。另外,在低電壓1mV偏壓下,由於環境因素使得本質石墨烯呈現p型摻雜造成電極與石墨烯形成能帶偏移(bending)的內建電場,以至於正及負光伏效應顯著提升。

    In the dissertation, the studies are divided into three parts. First, to deposit a tungsten layer on nanodiamond pre-seeded silicon substrates to observe the effects on the deposition of ultrananocrystalline diamond (UNCD) films. Tungsten carbide formed by reactions of the tungsten layer with carbon containing plasma species provides favorable (001) crystal planes for nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the total density of diamond seeds/nuclei. UNCD films grown at different gas pressures on pre-seeded nanodiamond and heteroepitaxially grown diamond nuclei were characterized by Raman scattering, FE-SEM, and HR- transmission electron microscopy.
    Bias-enhanced nucleation and growth (BEN-BEG) of carbon nano-pillars containing UNCD on silicon substrates by low-pressure MPECVD in a hydrogen-rich gas mixture with methane is reported. Direct-current (DC) biasing of the substrate in a constant-current mode is applied to substrates, which are pre-heated to 8000C and 9000C, to result in a negative bias voltage of greater than 350 volts through-out the nucleation and growth process. Sputtering of UNCD clusters and ion-assisted chemical vapor deposition by bias enhanced bombardment of energetic ions is attributed to the formation of carbon nano-pillars. The porous UNCD with high-density nano-pillars exhibits improved electron field emission characteristics compared to smooth and solid UNCD films. In addition, a SERS application for biomedical molecules detection using nano-pillars diamond due to high effective surface areas.
    Second, nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated. In addition, by using a novel nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) encapsulated NG/copper complex anodes. N-UNCD enables robust solid electrolyte interphase (SEI) formed by NG/electrolyte chemical reactions and suppresses stress induced cracks of the SEI and NG particles and the subsequent loss of anode conductivity.
    Third, the monolayer graphene (Gr) dendrite was synthesized by thermal CVD. The unique dendritic structure of the graphene has a high aspect ratio with primary and secondary branches that exhibits excellent EFE properties. Electrical characteristics for a single main branch were investigated from graphene back-gate FETs. The highest hole carrier mobility is up to 9200 cm2/Vs after 2500C thermal treatment in vacuum. The photoresponse of Gr dendrites applied above 1mV bias exhibits negative photoconductivity. Hot carriers scattering effect influence carriers transport under light illumination. It reduces photocurrent due to hot carriers scattering. The strong effects of positive and negative photovoltaic are appeared at a bias condition of 1mV. It is related to band bending with doping effect among graphene-electrode contacts.

    Chinese Abstract………………………………………………I English Abstract………………………………………………IV Acknowledgement…………………………………………………VII Contents……………………………………………………………………VIII Table Captions……………………………………………………XI Figure Captions…………………………………………………XII Chapter 1- Introduction ……… 1 1-1 Motivation ……… 1 1-2 Background of Nanocarbon Materials ……… 2 1-2-1 Diamond ……… 2 1-2-2 Graphene ……… 6 1-3 Organization of the Dissertation ……… 9 References ……… 11 Chapter 2- Nucleation and Growth of UNCD Films on Silicon Substrates Coated with a Tungsten Layer ……… 15 2-1 Chemically Vapor Deposited Diamond Films ……… 15 2-2 Experimental of UNCD Growth with a Tungsten Layer … 17 2-3 Characterization of UNCD and Tungsten Layer ……… 19 References ……… 29 Chapter 3- MPECVD of UNCD Films by Bias-Enhanced Nucleation and Bias-Enhanced Growth ……… 32 3-1 Introduction of BEN-BEG Process ……… 32 3-2 Deposition of UNCD Films by BEN-BEG ……… 33 3-3 Experimental Results and Discussion ……… 35 3-3-1 Biasing Current-Voltage Characteristics and Microstructures of UNCD Films ……… 35 3-3-2 UV (325nm) Raman scattering of BEN-BEG UNCD films …40 3-3-3 HR-TEM Analysis and Selected Area Electron Diffraction (SAED)……… 42 3-4 Applications to UNCD Films by BEN-BEG ……… 53 3-4-1 Electron Field Emission ……… 53 3-4-2 AgNPs Coated UNCD Nanopillars as SERS Substrates …… 55 References ……… 57 Chapter 4 – Electrically Conductive Nitrogen-Incorporated UNCD Films ……… 60 4-1 Experimental of N-UNCD Synthesis ……… 60 4-2 Characterizations of N-UNCD Microstructure ……… 62 4-3 Applications of N-UNCD Films ……… 66 4-3-1 Resistive Heater ……… 66 4-3-2 N-UNCD Coated Anode for Lithium-Ion Battery ……… 69 References ……… 74 Chapter 5- Synthesis and Characterizations of Graphene Dendrites ……… 77 5-1 Graphene Dendrites Growth ……… 77 5-2 Characterizations of Graphene Dendrites ……… 81 5-2-1 Carrier Mobility ……… 81 5-2-2 Electron Field Emission ……… 85 5-2-3 Photoconductivity ……… 88 References ……… 94 Chapter 6- Conclusions and Future Work ……… 98 6-1 Conclusions ……… 98 6-2 Future Work ……… 101

    Chapter 1-
    [1] J. E. Butler and A. V. Sumant, “The CVD of Nanodiamond Materials”, Chem. Vap. Deposition, vol.14, pp.145-160, 2008.
    [2] W. Yang, O. Auciello, J. E. Butler, W. Cai, J. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, Jr., L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates”, Nature Mater., vol. 1, pp. 253-257, 2002.
    [3] W. Yang, S. E. Baker, J. E. Butler, C. S. Lee, J. N. Russell, Jr., L. Shang, B. Sun, and R. J. Hamers, “Electrically addressable biomolecular functionalization of conductive nanocrystalline diamond thin films”, Chem. Mater., vol.17, pp.938-940, 2005.
    [4] Y. K. Liu, P. L. Tso, I. N. Lin, Y. Tzeng, and Y. C. Chen, “Comparative study of nucleation processes for the growth of nanocrystalline diamond” Diamond Relat. Mater., vol.15, pp.234-238, 2006.
    [5] Y. Tzeng, Y. Chen, and C. Liu, “Fabrication and characterization of non-planar high-current-density carbon-nanotube coated cold cathodes”, Diamond Relat. Mater., vol.12, pp. 442-445, 2003.
    [6] C. Y. Liu, K. C. Liang, W. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy” Opt. Express, vol.19, pp.17092-17098, 2011.
    [7] C. H. Tu, W. Chen, H. C. Fang, Y. Tzeng, and C. P. Liu, “Heteroepitaxial nucleation and growth of graphene nanowalls on silicon” Carbon, vol.54, pp.234-240, 2013.
    [8] Y. Tzeng, C. L. Chen, Y.-Y. Chen, and C.-Y. Liu, “Carbon nanowalls on graphite for cold cathode applications”, Diamond Relat. Mater., vol.19, pp.201-204, 2010.
    [9] Y. Tzeng, W. L. Chen, C. Wu, J. Y. Lo, and C. Y. Li, “The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition”, Carbon, vol.53, pp.120-129, 2013.
    [10] O. Auciello and A. V. Sumant, “Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices”, Diamond Relat. Mater., vol.19, pp.699-718, 2010.
    [11] A. V. Sumant, O. Auciello, R. W. Carpick, S. Srinivasan, and J. E. Butler, “Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications”, MRS Bulletin, vol.35, pp.281-288, 2010.
    [12] Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, “Effect of boron doping on the electron-field-emission properties of nanodiamond films”, J. Appl. Phys., vol.97, pp. 054310- 1-5, 2005.
    [13] S. Bhattacharyya , O. Auciello , J. Birrell , J. A. Carlisle , L. A. Curtiss , and A. N. Goyette , “Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films”, Appl. Phys. Lett., vol.79 , pp.1441-1443 ,2001.
    [14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, vol.438, pp.197- 200, 2005.
    [15] David Saada, Diamond and graphite properties, 2000.
    [16] http://www.hk-phy.org/atomic_world/carbon/carbon01_c.html
    [17] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nature Materials, vol 8, pp.203-207, 2009.
    [18] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, vol.324, pp.1312-1314, 2009.
    [19] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett., vol.9, pp.4268-4272, 2009.
    [20] B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K. Ikeda, and S. Mizuno, ”Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD”, Carbon, vol.50, pp.57-65, 2012.
    [21] X. Li, C. W. Magnuson, A. Venugopal, J. An, and J. W. Suk, “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process”, Nano Lett., vol.10, pp.4328-4334, 2010.
    [22] H. Wang , G. Wang , P. Bao, S. Yang, W. Zhu, X. Xie, and W. J. Zhang, “Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation”, J. Am. Chem. Soc., vol.134, pp.3627-3630, 2012.
    [23] L. Fan, J. Zou, Z. Li, X. Li, K. Wang, J. Wei, M. Zhong, D. Wu, Z. Xu, and H. Zhu, “Topology evolution of graphene in chemical vapor deposition, a combined theoretical/experimental approach toward shape control of graphene domains”, Nanotechnology, vol.23, 115605, 2012.
    [24] S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene”, Rev. Mod. Phys., vol. 83, 407, 2011.

    Chapter 2-
    [1] S. Yugo, T. Kanai, T. Kimura and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Appl. Phys. Lett., vol.58, pp.1036-1038, 1991.
    [2] P. Gluche, M. Adamschik, A. Vescan, W. Ebert, et al. “Application of highly oriented, planar diamond (HOD) films of high mechanical strength in sensor technologies”, Diamond Relat. Mater., vol.7,pp. 779-782, 1998.
    [3] Y. Gurbuza, O. Esame, I. Tekin, W. P. Kang, J. L. Davidson, “Diamond semiconductor technology for RF device applications”, Solid-State Electronics, vol.49, pp.1055-1070, 2005.
    [4] Y. Lifshitz, C. H. Lee, Y. Wu, W. J. Zhang, I. Bello, and S. T. Lee, “Role of nucleation in nanodiamond film growth”, Appl. Phys. Lett., vol.88, pp.243114-1-3, 2006.
    [5] N. N. Naguib, J. W. Elam, J. Birrell, J. Wang, D. S. Grierson, B. Kabius, J. M. Hiller, A. V. Sumant, R. W. Carpick, O. Auciello, and J. A. Carlisle,” Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chem. Phys. Lett., vol.430, pp.345-350, 2006.
    [6] J. G. Buijnsters, L. Va´zquez, G. W. G. van Dreumel, J. J. ter Meulen, W. J. P. van Enckevort, and J. P. Celis, “Enhancement of the nucleation of smooth and dense nanocrystalline diamond films”, J. Appl. Phys., vol.108, pp.103514-1-9, 2010.
    [7] J. C. Arnault,” Highly oriented diamond films on heterosubstrates: current state of the art and remaining challenges”, Surf. Rev. Lett., vol.10, pp.127-146, 2003.
    [8] O. Auciello and A. V. Sumant, “ Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices”, Diamond Relat. Mater., vo.l19, pp.699-718 ,2010.
    [9] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys., vol. 96, pp.2232-2239 , 2004.
    [10] J. Griffin and P. C. Ray, ” Role of inert gas in the low-temperature nano-diamond chemical vapour deposition process”, Nanotechnology, vol.17, pp.1225-1229, 2006.
    [11] J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, ” The role of C2 in nanocrystalline diamond growth”, J. Appl. Phys., vol.96, pp.6724-6732, 2004.
    [12] D. T. Tran, W. S. Huang, J. Asmussen, T. A. Grotjohn, and D. K. Reinhard, “Synthesis of ultrananocrystalline diamond films by microwave plasma-assisted chemical vapor deposition”, New Diamond Front. Carbon Technol., vol.16, pp.281-294, 2006.
    [13] D. King, M. K. Yaran, T. Schuelke, T. A. Grotjohn, D. K. Reinhard, and J. Asmussen, “Scaling the microwave plasma-assisted chemical vapor diamond deposition process to 150–200 mm substrates”, Diamond Relat. Mater., vol.17, pp.520-524, 2008.
    [14] J. H. Jiang and Y. Tzeng, ” Mechanisms of suppressing secondary nucleation for low-power and low-temperature microwave plasma self-bias-enhanced growth of diamond films in argon diluted methane”, AIP Adv., vol.1, pp.042117-1-11, 2011.
    [15] C. M. Liu, K. Teii, T. L. Sung, K. Ting, and S. Teii, “Role of Hydrogen in Ultrananocrystalline Diamond Deposition From Argon-Rich Microwave Plasmas”, IEEE Trans. Plasma Sci., vol.37, pp.1172-1171, 2009.
    [16] L. J. Chen, C. C. Liu, N. H. Tai, C. Y. Lee, W. Fang, and I. N. Lin, “Effects of Tungsten Metal Coatings on Enhancing the Characteristics of Ultrananocrystalline Diamond Films”, J. Phys. Chem. C, vol.112, pp.3759-3765, 2008.
    [17] Y. C. Chen, X. Y. Zhong, and A. R. Konicek, D. S. Grierson, N. H. Tai, I. N. Lin, B. Kabius, J. M. Hiller, A. V. Sumant, R. W. Carpick, and O. Auciello, “Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth”, Appl. Phys. Lett., vol.92, pp.133113-1-3, 2008.

    Chapter 3-
    [1] X. Y. Zhong, Y. C. Chen, N. H. Tai, I. N. Lin, J. M. Hiller, and O. Auciello, “Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping”, J. Appl. Phys., vol.105, pp. 034311-1-7, 2009.
    [2] Y. C. Chen, X. Y. Zhong, A. R. Konicek, D. S. Grierson, N. H. Tai, I. N. Lin, B. Kabius, J. M. Hiller, A. V. Sumant, R. W. Carpick, and O. Auciello, “Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth”, Appl. Phys. Lett., vol.92, pp.133113-1-3, 2008.
    [3] S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, and
    Y. Lifshitz, “A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films”, Science, vol.287, pp.104-106, 2000.
    [4] K. Teii, T. Ikeada, A. Fukutomi, and K. Uchino, “ Effect of hydrogen plasma exposure on the amount of trans-polyacetylene in nanocrystalline diamond films”, J. Vac. Sci. Technology B., vol.24, pp.263-266, 2006.
    [5] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, and I. Lin, “Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane”, Diamond Relat. Mater., vol.13, pp.671-678, 2004.
    [6] A.C. Ferrari, and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond”, Phil. Trans. R. Soc. Lond. A., vol.362, pp.2477-2512, 2004.
    [7] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, J. Appl. Phys. vol.79, pp.4388, 1996.
    [8] Y. C. Chu, C. H. Tu, C. P. Liu, Y. Tzeng and O. Auciello, Ultrananocrystalline diamond nano-pillars synthesized by microwave plasma bias-enhanced nucleation and bias-enhanced growth in hydrogen-diluted methane. J. Appl. Phys. vol.112, pp.124307, 2012
    [9] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, “Electron field emission for ultrananocrystalline diamond films”, J. Appl. Phys., vol.89, pp.2958–2967, 2001.
    [10] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, ” The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond Relat. Mater., vol.11, pp. 43–48, 2002.
    [11] C.H. Huang, H.Y. Lin, S. Chen, C.Y. Liu, H.C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors”, Opt. Express., vol.19, pp.11441-11450, 2011.
    [12] H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule”, Phys. Rev. B., vol.69, 155418-1-11 (2004).
    [13] M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. Chang, T. C. Bond and G. L. Liu,” Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays”, Nanotechnology, vol.21, 395701, 2010.
    [14] F. Feng, G. Zhi, H. S. Jia, L. Cheng, Y. T. Tian, and X. J. Li, “SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array”, Nanotechnology, vol.20, 295501, 2009.
    [15] Z. Huang, G. Meng, Q. Huang, Y. Yang, C. Zhu, and C. Tang, “Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering”, Adv. Mater., vol.22, pp.4136-4139, 2010.
    [16] A. Ilie, C. Durkan, W.I. Milne, and M.E. Welland, “ Surface enhanced Raman spectroscopy as a probe for local modification of carbon films”, Phys. Rev. B., vol.66, pp.045412-1-13, 2002.

    Chapter 4-
    [1] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant and P. Zapol, “Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films”, Appl. Phys. Lett., vol.79, pp.1441-1443, 2001.
    [2] S. Raina, W. P. Kang, and J. L. Davidson, “Nanodiamond film with ‘ridge’ surface profile for chemical sensing”, Diamond Relat. Mater., vol.17, pp.896-899, 2008.
    [3] H. Wang , T. Maiyalagan , and X. Wang, “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications”, ACS Catal., vol.2, pp.78-794, 2012.
    [4] K. Teii, S. Shimada, M. Nakashima, and A. T. H. Chuang, “ Synthesis and electrical characterization of n-type carbon nanowalls”, J. Appl. Phys., vol.106, pp.084303-1–6, 2009.
    [5] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Appl. Phys. Lett., vol.88, pp.163106-1-3, 2006.
    [6] Y. Tzeng, S. P. Yeh, W. C. Fang, Y. C. Chu, Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films. Scientific Reports, vol.4 (4531), pp.1-7, 2014.
    [7] F. Tuinstra and J. L. Koenig,” Raman spectrum of graphite ”, J. Chem. Phys., vol.53, pp.1126-1130, 1970.
    [8] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett., vol.97, 187401-1-4, 2006.
    [9] V. A. Krivchenko, V. V. Dvorkin, N. N. Dzbanovsky, M. A. Timofeyev, A. S. Stepanov, A.T. Rakhimov, N. V. Suetin, O. Yu. Vilkov, and L. V. Yashina, “Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge”, Carbon, vol.50, pp.1477-1487, 2012.
    [10] P. Lespade, A. Marchand, M. Couzi, and F. Cruege, “ Characterisation de materiaux carbones par microspectrometrie Raman”, Carbon vol. 22, pp.375-385, 1984.
    [11] I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, “Ultraviolet Raman microscopy of single and multilayer graphene”, J. Appl. Phys., vol.106, pp.043509-1-5, 2009.
    [12] J. J. Gallagher, R. H. Svenson, J. H. Kasell, L. D. German, G. H. Bardy, A. Broughton, and G. Critelli,, “Catheter technique for closed-chest ablation of the atrioventricular conduction system”, New England J. Med., vol.306, pp.194-200, 1982.
    [13] Y. W. Cheng, C. K. Lin, Y. C. Chu, A. Abouimrane, Z. Chen, Y. Ren, C. P. Liu, Y. Tzeng, and O. Auciello, “Electrically Conductive Ultrananocrystalline Diamond-Coated Natural Graphite-Copper Anode for New Long Life Lithium-Ion Battery”, Advanced Materials, doi: 10.1002/adma.201400280, pp. 1-6, 2014.
    [14] O. Auciello and A. V. Sumant, “Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices”, Diamond Relat. Mater., vo.l19, pp.699-718, 2010.
    [15] P. Badziag, W. S. Verwoerd, W. P. Ellis and N. R. Greiner, “Nanometre-sized diamonds are more stable than graphite”, Nature, vol.343, pp.244-245, 1990.
    [16] W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, Jr., L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates”, Nature Materials, vol.1, pp.253-257, 2002.

    Chapter 5-
    [1] Li Gao, J. R. Guest and N. P. Guisinger, “Epitaxial Graphene on Cu(111)”, Nano Lett., vol.10, pp.3512-3516, 2010.
    [2] P. W. Voorhees, “The Theory of Ostwald Ripening”, J. Stat. Phys., vol.38, pp.231-252, 1985.
    [3] Y. Y. Wang , Z. H Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen, and A. T. S. Wee,” Raman Studies of Monolayer Graphene: The Substrate Effect”, J. Phys. Chem. C, vol.112, pp.10637-10640, 2008.
    [4] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phys. Rev. Lett., vol.97, pp.187401-1-4, 2006.
    [5] P. Joshi, H. E. Romero, A. T. Neal, V. K. Toutam, and S. A. Tadigadapa, “Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates”, J. Phys.: Condens. Matter., vol.22, 334214, 2010.
    [6] H. Wang , Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of Electronic Transport in Graphene Transistors”, ACS Nano, vol.12, pp.7221-7228, 2010.
    [7] Frank Schwierz, “Graphene transistors”, Nature Nanotechnology, vol.5, pp. 487-496, 2010.
    [8] R. Shi, H. Xu, B. Chen, Z. Zhang, and L. M. Peng, “Scalable fabrication of graphene devices through photolithography”, Appl. Phys. Lett., vol.102, pp.113102-1-5, 2013.
    [9] A. Pirkle, J. Chan, and A. Venugopal et al., “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2”, Appl. Phys. Lett., vol.99, pp.122108-1-3, 2011.
    [10] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “Toward Clean and Crackless Transfer of Graphene”, ACS Nano, vol.5, pp. 9144-9153, 2011.
    [11] Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, and C. Zhou, “Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties”, Nano Lett., vol.12, pp.2810-2816, 2012.
    [12] G. Eda, H. E. Unalan, N. Rupesinghe, Gehan A. J. Amaratunga and M. Chhowalla, “Field emission from graphene based composite thin films”, Appl. Phys. Lett., vol.93, pp.233502, 2008.
    [13] Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H. M. Cheng, “Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition ”, Advanced Materials, vol. 21, pp.1756–1760, 2009.
    [14] M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen and Z. Sun, “Electron field emission from screen-printed graphene films”, Nanotechnology, vol. 20, pp.425702 , 2009.
    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, vol.438, pp.197-200, 2005.
    [16] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nature Materials, vol.8, pp.203-207, 2009.
    [17] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, vol.324(5932), pp.1312-1314 , 2009.
    [18] Q. Bao, and K. P. Loh, “Graphene photonics, plasmonics, and broad optoelectronic devices”, ACS Nano, vol.6, pp.3677-3694, 2012.
    [19] Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon”, Nature, vol.472, pp.74-78, 2011.
    [20] S. J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, W. Haensch. “Graphene ratio frequency receiver integrated circuit”, Nature Comm. vol.5, doi:10,1038/ncomms4086, 2014.
    [21] M. Freitag, T. Low, P. Avouris. “Increased Responsivity of Suspended Graphene Photodetectors”, Nano Lett., vol.13, 1644-1648 2013.
    [22] M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene”, Nature Photonics vol.7, pp.53-59, 2013.
    [23] D. Basko, “Photothermoelectric Effect in Graphene”, Science, vol.334, pp.610, 2011.
    [24] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, An “Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptor for Photovoltaics”, Advanced Mat., vol.23, pp.776-780, 2011.
    [25] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene”, Nature Comm. vol.2, doi: 10.1038/ncomms pp.1589, 2011.
    [26] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector”, Nature Comm., vol.4, doi: 10.1038/ncomms2830, 2013.
    [27] M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-Activated Photoresponse in a Graphene p-n Junction”, Nano Lett., vol.11, pp.4134-4137, 2011.
    [28] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko , P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature”, Nano Lett., vol.11, pp.2396-2399, 2011.
    [29] T. Winzer, A. Knorr, and E. Malic. “Carrier Multiplication in Graphene”, Nano Lett., vol.10, pp.4839-4843, 2010.
    [30] L. Pirro, A. Girdhar, Y. Leblebici, and J. P. Leburton. “Impact ionization and carrier multiplication in graphene”, J. Appl. Phys., vol.112, pp.093707, 2012.

    無法下載圖示 校內:2019-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE