| 研究生: |
郭宇杰 Kuo, Yu-Chie |
|---|---|
| 論文名稱: |
旋轉液柱的滴落現象分析 The Dripping Phenomena of a Rotating Liquid Jet |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 液柱斷裂 、旋轉速率 、毛細現象 、滴流 、液滴 |
| 外文關鍵詞: | Jet Breakup, Rotating Speed, Capillary Rise, Dripping, Drop |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別為不同乙醇濃度的液柱斷裂特性研究,以及水在不同流率(Q)、不同的液柱直徑(dj)和不同旋轉速度(ω)條件下的滴落特徵變化。不同乙醇濃度為工作流體,主要是探討流體性質變化對於液柱斷裂現象的影響性。研究結果顯示,乙醇濃度的變化會影響液柱的斷裂長度(Lj);當乙醇濃度越高,液柱斷裂長度越長。此外,本研究另提出能夠預測不同乙醇濃度的液柱斷裂長度經驗公式。
水在不同流率(Q)和旋轉速度(ω)條件下的滴落特徵變化,主要是將噴嘴搭配一組可調速的旋轉機構,並改變不同的液柱直徑(dj)、流體流率(Q)與噴嘴旋轉速率(ω),藉此探討滴落過程的液柱頂端長度(L)、左側偏移量(δd)以及毛細上升高度(δh)在整個滴落過程內的變化。研究結果顯示噴嘴旋轉速率(ω)和流體流率()均會影響斷裂時間間隔(tb)。同時噴嘴旋轉速率也會影響滴落的偏移量,轉速越高偏移現象越明顯;而管徑亦會影響液體的毛細上升現象,管徑越小毛細上升現象越明顯。
This research analyzes the breakup patterns of the ethanol-water jet of different volume concentration and the characteristic of a liquid jet under various conditions (e.g., various flow rates and rotating speeds). In the first part of the study, various concentrations of ethanol are used to analyze the characteristics of a liquid jet for various fluid properties and jet diameters. The surface tension is the main factor which causes the jet breakup. A smaller surface tension leads to a longer breakup length. The viscosity also has an effect. The breakup length of the fluid will slightly become longer if the fluid has a larger viscosity. A new correlation function is found based on the experimental data. The correlation works well for ethanol-water mixture, but it fails to predict the breakup length of water for small-diameter nozzles.
In the second part of the study, the characteristics of a dripping flow in a breakup process for various flow rates, rotating speeds, and inner nozzle diameters are investigated. It was found that the rotating speed and flow rate affect the breakup time. A high rotating speed causes an obvious deviation of the liquid column from the center-line of the nozzle. A more significant capillary rise occurs when the nozzle diameter is smaller. The parameters that make the breakup of the liquid column less stable are discussed.
1. Savart, F., “Mémoire sur la constitution des veines liquides lancées pardes orifices circulaires en mince paroi,” Ann. Chem. Phys., vol. 53, pp. 337-386, 1833.
2. Plateau, J., “Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires,” Gauthier-Villars, Paris, 1873.
3. Lord Rayleigh, “On the capillary phenomena of jet,” Proc. R. Soc. London, vol. 29, pp. 71-97, 1879.
4. Weber, C., “On the Breakdown of a Fluid Jet,” Z. Agnew. Math. Mech., vol. 11, pp. 136-154, 1931.
5. Donnelly, R. J. and Glaberson, W., “Experiments on the capillary instability of a liquid jet,” Proc. R. Soc. London, vol. 290, pp. 547-556, 1966.
6. Faidley, R.W. and Panton, R. L., “Measurement of Liquid Jet Instability Induced by Surface Tension Variations,” Exp. Therm. Fluid Sci., pp. 383-387, 1990.
7. Tyler, E., and Richardson, E. G., “The characteristic curves of liquid jets,” Proc. Phys. Soc. London, vol. 37, pp. 297-311, 1924.
8. Bonhoeffer, B., Kwade, A., and Juhnke, M., “Impact of Formulation Properties and Process Parameters on the Dispensing and Depositioning of Drug Nanosuspensions Using Micro-Valve Technology,” J Pharm Sci., vol.106, pp. 1102-1110, 2017.
9. Tate, T., “On the magnitude of a drop of liquid formed under different circumstances,” Philos. Mag., vol. 27, pp. 176-180, 1864.
10. Harkins, W. and Brown, F. “The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method,” J. Am. Chem. Soc., vol. 41, pp. 499-524, 1919.
11. Martien, P., Pope, S. C., Scott, P. L., and Shaw, R. S., “The chaotic behavior of the leaky faucet,” Phys. Rev. Lett., vol. 110A, pp. 399-404, 1985.
12. Chang, B., Nave, G., and Jung, S., “Drop formation from a wettable nozzle,” Commun Nonlinear Sci Numer Simul, vol. 17, pp. 2045-2051, 2012.
13. Clanet, C., and Lasheras, J. C., “Transition from dripping to jetting,” J. Fluid Mech, vol. 383, pp. 307-326, 1999.
14. Lord Rayleigh, “On the dynamic of revolving fluid,” Proc. R. Soc.London, vol. 1, pp. 148-154, 1916.
15. Hocking, L. M. and Michael, D. H., “The stability of a column of rotating liquid,” Mathematika, vol. 6, pp. 25-32, 1959.
16. Hocking, L. M., “The stability of a rigidly rotating column of liquid,” Mathematika, vol. 7, pp. 1-9, 1960.
17. Gillis, J., “Stability of a column of rotating viscous liquid,” Proc. Camb. Phil. Soc. 57, pp. 152-159, 1961.
18. Rutland, D. F. and Jameson, G. J., “Droplet production by the disintegration of rotating liquid jets,” Chem. Eng. Sci., vol. 25, pp. 1301-1317, 1970.
19. Chang, C., “A Study on the Breakup of a Rotating Liquid Jet,” Department of Mechanical Engineering, National Cheng Kung University, 2018.
20. Haenlein, A., “Disintegration of a Liquid Jet,” Natl Advisory Comm. Aeronaut. Tech. Memo No. 659, 1932.
21. Grant, R. P. and Middleman, S., “Newtonian jet stability,” AIChE Journal, vol. 12, pp. 669-678, 1966.
22. Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M.P., and Lohse, D., “Breakup of dimunitive Rayleigh jets,” Phys. Fluids., vol. 22, pp. 122003, 2010.
23. Vassallo, P. and Ashgriz, N., “Satellite formation and merging in liquid jet,” Proc. R. Soc. London, Ser. A, vol. 433, pp. 269-286, 1991.