簡易檢索 / 詳目顯示

研究生: 王惠茹
Wang, Hui-Ru
論文名稱: 加勁擋土設施動態行為之模擬分析
Simulation Analysis on Dynamic Behavior of Reinforced Soil Retaining Structures
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 199
中文關鍵詞: 二維有限差分軟體加勁擋土設施簡諧振動真實地震記錄
外文關鍵詞: Simple harmonic motion, Earthquake record, Reinforced soil retaining facilities, Flac
相關次數: 點閱:146下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣處於地震活動頻繁之環太平洋地震帶,近幾年來強震更對結構物造成莫大的考驗,自然邊坡常處於不穩定的狀態,故開發時需要使用擋土設施增加穩定性,因此對於加勁擋土設施在動態載重下的行為,有必要做進一步的了解。
    本研究以二維有限差分軟體FLAC(Fast Largragian Analysis of Continua)建立數值模型,其數值模型採用前人所模擬之加勁邊坡模型,並將前人完整資料進行參數分析。為瞭解試驗模擬與現地受振動之動態行為,建立不同坡度與設計參數之分析模型,其振動力分別為簡諧振動與真實地震記錄,並藉由數值模擬的方式,探討不同振動力對加勁擋土設施之牆面變形與土體內部產生破壞面之動態反應。
    由研究結果可發現,加勁材埋入長度越長,其破壞面在進入加勁區會離牆底越高,破壞面的坡度會越平緩;相對的,埋入長度越短,其破壞面在進入加勁區會離牆越低,破壞面的坡度會越陡。而在相同的地震參數與設計參數下,加勁邊坡之土體變位會比加勁擋土牆之土體變位小。

    A large number of geosynthetic reinforced soil wall were damaged during the earthquake in Taiwan.Therefore it is necessary to investigate the mechanical behavior of the wall under dynamic loads.
    The two-dimensional, explicit dynamic finite difference program Fast Lagrangian Analysis of Continua (FLAC) was used to carry out the numerical analysis. A predecessor’s simulation of reinforced slope model was adopted for the study. In order to investigate the dynamic behavior of experinent simulation and behavior in situ, the numerical models under different slope and design parametes are established. The vibration forces are simulated from simple harmonic motion and from real earthquake records. The deformation of geosynthetic reinforced soil wall and interior failure surface generated the wall are also investigated.
    The study results indicated that the longer the length of embedment of the geosynthetic material, the higher the failure plane is aported from the bottom of the wall. On the contrary, as the shorten the length of embedment, the lower the failure plane, and much steeper the failure surface.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 X 圖目錄 XI 符號說明表 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法與流程 2 1.4 論文內容 3 第二章 文獻回顧 5 2.1 模型試驗 5 2.2 模型建立 8 2.3 加勁擋土牆動態分析 12 2.3.1 擬靜態土壓力原理 12 2.3.2 地震加速度係數之選定 14 2.4 數值分析介紹 15 2.5 地震的影響參數 25 2.5.1 最大地表加速度(PGA) 25 2.5.2 頻率 25 2.5.3 延時 26 2.6 華盛頓大學加勁邊坡振動台試驗 27 2.6.1 振動台試驗內容 27 2.6.2 數值模型驗證 30 第三章 研究方法 35 3.1 FLAC程式介紹 35 3.2 FLAC內建材料模式 40 3.2.1 彈性材料模式 40 3.2.2 橫向等向性材料模式 40 3.2.3 莫爾庫倫材料模式 41 3.2.4 空洞模式 41 3.3 FLAC界面元素 42 3.4 FLAC內建結構元素 42 3.5 動態分析 43 3.5.1 輸入振動 43 3.5.2 邊界設定 44 3.5.3 阻尼系統 45 3.6 加勁擋土牆與加勁邊坡之動態行為 47 3.6.1 牆面變位 47 3.6.2 破壞面 48 第四章 模型介紹 49 4.1 發展數值模型 49 4.1.1 模型建立 49 4.1.2 邊界條件 49 4.1.3 土壤模型 50 4.1.4 加勁材料模型 52 4.1.5 面版 53 4.1.6 平衡準則 55 4.1.7 模型建造 55 4.2 建立全尺寸模型 56 4.3 數值分析過程 58 4.3.1 振動台模式 58 4.3.2 真實地震記錄之模式 58 第五章 模擬結果 61 5.1 分析模型建立 61 5.2 簡諧振動模擬 65 5.2.1 牆面變位 65 5.2.2 降伏加速度 72 5.2.3 土體變位 79 5.3 真實地震記錄之模擬 87 5.3.1 坡面變位 87 5.3.2 土體變位 91 第六章 結果討論 97 6.1 設計參數在簡諧振動下之影響 97 6.1.1 坡(牆)面最大位移量 97 6.1.2 破壞面 105 6.2 設計參數在真實地震記錄下之影響 107 6.2.1 坡(牆)面變位量 107 6.2.2 破壞面 113 第七章 結論與建議 122 7.1 結論 122 7.2 建議 124 參考文獻 125 附錄A 簡諧振動模擬牆面位移比較圖 131 附錄B 降伏加速度關係圖 135 附錄C 簡諧振動模擬土體位移圖 137 附錄D 真實地震模擬之坡面位移比較圖 149 附錄E 真實地震模擬之土體位移圖 173 附錄F 真實地震之測站位置表 198 作者簡歷 199

    1.中華地工材料協會,加勁擋土結構設計及施工手冊,中華地工材料協會,(2001)。

    2.王鴻圖,「加勁邊坡土體動態行為之模擬分析」,國立成功大學土木工程研究所碩士論文,(2006)。

    3.江鑑清,「疊塊式加勁邊坡之靜動態行為分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。

    4.周南山,「地工合成物加勁坡分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。

    5.范峻崇,「土釘加勁邊坡靜動態行為分析」,私立淡江大學土木工程學系碩士論文,(2005)。

    6.洪榮祥,「加勁邊坡動態行為之模擬分析」,國立成功大學土木工程研究所碩士論文,(2007)。

    7.陳天健,「加勁擋土牆靜動態行為之均質化分析」,國立台灣大學土木工程學研究所博士論文,(1998)。

    8.陳建吾,「加勁擋土牆動態行為之模擬」,國立成功大學土木工程研究所碩士論文,(2004)。

    9.蔡浻祥,「加勁邊坡動態行為模擬之分析」,國立成功大學土木工程研究所碩士論文,(2005)。

    10.賴盈如,「加勁邊坡動態反應分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。

    11.Bathurst, R.J. and Koerner R.M., “Results of Class A Predictions for the RMC Reinforced Soil Wall Trials,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).

    12.Bathurst, R.J. and Hatami, K., “Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall,” Geosynthetics International, Vol.5, No.1-2, pp.127-166, (1998).

    13.Bathurst, R.J. and Hatami, K., “Dynamic Response of Reinforced-Soil Retaining Walls to Ground Motion,”PartⅡ: Parametric Analysis. Proceedings of the 17th Canadian Congress of Applied Mechanics, CANCAM 99. McMaster University,Hamilton,Ontario.Canada,pp.89-90,(1999b).

    14.Bassett, R.H. and Last, H.C., “Reinforced Earth Below Footings and Embankments,” Proceeding, Symposium on Reinforced Earth, ASCE, Pittsburgh, pp. 222-331, (1978).

    15.Bonaparte, R., Holtz, R.D., and Giroud, J.P., “Soil Reinforcement Design Using Geotextiles and Geogrids,” Geotextile Testing and the Desing Engineer, ASTM STP 952, J. E. Fluet, Jr., Ed.,American Society for Testing and Materials, Philadelphia, pp. 69-116, (1987).

    16.Bonaparte, R., Schmertmann, G.R., and Willians, N.D., “Seismic design of slopes reinforced with geogrid geotextiles,” The 4th Inter. Con. on Geotextiles and Geomembranes, Netherland,Vol.1, pp.97-99, (1986).

    17.Burgess, G.P., “Two Full-Scale Model Geosynthetic-Reinforced Segmental Retaining Walls,” Master of Science Thesis, Royal Military College of Canada, Kingston, (1999).

    18.Central Weather Bureau, Acceleration Time-History Data, (2002).

    19.Duncan, J.M., Byrne, P., Wong, K.S. and Mabry, P. “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses,” Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).

    20.FHWA, Manual for Design and Construction Monitoring of Soil Nail Walls,FHWA-SA-96-069R, Federal Highway Administration, U.S.A., (1998).

    21.Hatami, K. and Bathurst, R.J., “Effect of Structural Design on Fundamental Frequency of Reinforced-Soil Retaining Walls,” Soil Dynamics and Earthquake Engineering, April, pp.137-157, (2000).

    22.Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc.Volume I, II, III, IV, (1999).

    23.Kramer, S.L., “Geotechnical Earthquake Engineering,” Prentice Hall International Series, University of Washington, pp. 54-105, (1996).

    24.Lade, P.V. and Lee, K.L., “Engineering Properties of Soils,” Report UCLA-ENG-7652, pp. 145, (1976).

    25.Lee, W.F., “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls,” Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).

    26.Matsuo, O., Tsutsumi, K., Yokoyama, K. and Saito, Y., “Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Wall,” Geosynthetic International, Vol 5, Nos. 1-2, pp. 97-126, (1998).

    27.McElroy, J.A., “Seismic stability of geosynthetic reinforced slopes: a shaking table study,” Master of Science of Thesis, University of Washington, (1997).

    28.NCMA, “Segmental Retaining Walls – Seismic Design Manual,” 1st Edition, National Concrete Masonry Association, Bathurst, R. J., USA, (1998).

    29.Nova-Roessig, L., “Centrifuge studies of the seismic performance of reinforced soil structures,” Ph.D. Dissertation, University of California, Berkeley, p. 233, (1999).

    30.Nagel, R. B., “Seismic Behavior of the Reinforced Earth Walls,” Research Report 85-4, Department of Civil Engineering, University of Canterbury, New Zealand, (1985).

    31.Perez, A., “Seismic Response of Geosynthetic Reinforced Steep Slopes,” Master of Science Thesis, University of Washington, (1999).

    32.Richardson, G.N. and Lee, K.L., “Seismic Design of Reinforced Earth Walls,” Journal of Geotechnical Engineering, ASCE, Vol. 101, pp. 167-188, (1975).

    33.Richardson, G.N., “Earthquake Resistant Reinforced Earth Walls,” Proceeding of Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp.664-683, (1978).

    34.Richardson, G.N., Feger, D., Fong, A., and Lee, K.L., “Seismic Testing of Reinforced Earth Walls, ” Journal of Geotechnical Engineering, ASCE, Vol. 103, pp. 1-17, (1977).

    35.Rowe, R.K. and Ho, S.K., “Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).

    36.Rowe, R. K. and Ho, S. K., “Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls,” Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).

    37.Sakaguchi, M., Muramatsu, M. and Nagura, K., “A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance,” Proceeding of the International Symposium on Earth Reinforcement, Fukuoka, Japan, pp. 287-292, (1992).

    38.Sakaguchi, M., “Study of the Seismic Behavior of Geosynthetic Reinforced walls in Japan,” Geosynthetics International, Volume 3, No. 1, pp. 13-30, (1996).

    39.Seed, H.B. and Whitman, R.V., “Design of Earth Retaining Structures for Dynamic Loads,” ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).

    40.Vrymoed,J.,“Dynamic Response of Soil Reinforced Walls,” Transportation Research Board, 1242, pp.29-38 (1989).

    41.Yogendrakumar,M., Bathurst, R.J. and Finn,W.D.L., “Dynamic Response Analysis of Reinforced-Soil Retaining Walls,” Journal of Geotechnical Engineering, ASCE, Vol. 118, pp. 1158-1167, (1992).

    下載圖示 校內:2010-08-26公開
    校外:2011-08-26公開
    QR CODE