簡易檢索 / 詳目顯示

研究生: 羅盛耀
Luo, Sheng-Yao
論文名稱: 疏水/親油紡織品分離膜集油井的設計及其在水面浮油清除和回收之應用
Designing Collection Well for Oil Spill Cleanup and Recovery by Using Hydrophobic/Oleophilic Fabrics
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 水性製程疏水/親油紡織品分離膜效能評估浮油清除和回收集油井設計理論預測
外文關鍵詞: Hydrophobic/oleophilic fabric membrane, Oil spill cleanup, Oil collection well design, Theoretical model
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於傳統處理水面上油污外洩問題往往耗時、耗能且效率低。本研究是以水性製程將高分子奈米粒子製備出疏水/親油紡織品分離膜並設計可以應用於大水域水面上浮油清除和回收之集油井並進行理論預測其分離過程。在本研究中設計出一簡易裝置來評估油體流經疏水/親油紡織品分離膜通量的表現,並藉由定義resistance of membrane (RM)來評估油體流經分離膜之阻力,以此為基礎可以用於預測分層油-水混合物之分離狀況,以提供實際應用設計參考,從結果中指出實驗和理論模型的決定係數(R2>0.9941),代表其方法具備相當高之準確性。藉由調控不同的水性鐵氟龍分散液(PTFE DISP)濃度與浸鍍次數,可以創造出不同孔徑大小及膜厚之分離膜,並影響其通量及突破壓力數值大小,從結果中顯示雖然在分離過程中需要較高的通量,但同時也會有著突破壓力較小的問題。此外,在本研究中顯示不同物理性質之牛頓流體所量測之RM差異不大,因此推測可以應用於其他牛頓流體通量的預測。

    Due to the frequent oil spill problem, the development of new oil-water separation methods with high efficiency, low cost and safety has been the popular research. In this work, competent hydrophobic/oleophilic fabric membranes for separating stratified oil-water mixtures can be fabricated by a simple waterborne polymeric nanoparticle coating process and can be used to build up oil collection wells for the oil spill problems. To predict the mass flux and separation time, we design a simple and small apparatus, and derived the mathematical model for low Re Newtonian fluid. The developed model can be used to determine the membrane performance by a membrane resistance, RM, to the Poiseuille flow of a liquid oil driven by gravity; and the agreement between theoretical and experimental results (R2>0.9941) confirmed the validity of the developed model. By coating with various PTFE DISP concentration and multiple coating times, the effective pore size and thickness of fabrics could be varied, and these results will affect the value of flux and water intrusion pressure (WIP). The WIP decrease as the RM decrease, it means that high flux (RM is small) for separating stratified oil-water mixture might face low hydrophobicity problem. Moreover, a fabric membrane with an as-determined value of RM can be used to accurately predict the separation time of stratified oil-water mixture in specific condition.

    摘要 I Extended Abstract II 致謝 XVI 目錄 XVIII 表目錄 XXI 圖目錄 XXII 符號 XXVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目標 2 第二章 文獻回顧 3 2.1 油污外洩問題 3 2.1.1 油污外洩的危害 3 2.1.2 定點燃燒 (in-situ burning) 4 2.1.3 機械方法 4 2.1.4 化學 6 2.1.5 生物整治 7 2.1.6 吸附劑 7 2.1.7 傳統油水分離的缺陷及未來發展 8 2.2 特殊潤濕性質 9 2.2.1 蓮花效應 11 2.2.2 超疏水表面之表徵 14 2.2.3楊式方程式 16 2.2.4 溫佐方程式 17 2.2.5卡西-巴斯特(Cassie and Baxter)方程式 18 2.2.6 介於溫佐及卡西-巴斯特之過度狀態 19 2.2.7 突破壓力 21 2.3 基於特殊濕潤性質之油-水分離應用 23 2.3.1 超疏水/超親油表面製備 23 2.3.2 疏水/親油分離膜解決海上油污外洩問題之概念 24 2.4 分離通量評估 31 2.4.1 利用實驗求得平均通量 31 2.4.2 利用模型評估通量 32 2.4.3 Hagen-Poiseuille equation 39 第三章 模型建立 42 3.3.1 集油井裝置模型 42 3.3.2 垂直裝置模型 47 3.3.3 傾斜模型 50 第四章 實驗內容 56 4.1 實驗材料 56 4.2 儀器設備與裝置 57 4.2.1 Milli-Q超純水系統 57 4.2.2 箱型高溫爐 (muffle furnace) 58 4.2.3 掃描式電子顯微鏡 (scanning electron microscope) 58 4.2.4 接觸角分析儀 (contact angle measure analyzer) 60 4.2.5 奧士瓦黏度計(ostwald viscosimeter) 61 4.2.6 垂直分離裝置 61 4.3 實驗方法 63 4.3.1 聚酯纖維紡織品基材前處理 63 4.3.2 鐵氟龍分散液製備 63 4.3.3 利用浸鍍法來製備疏水/親油聚酯纖維紡織品分離膜 63 4.3.4 接觸角量測 64 4.3.5 突破壓力量測 65 4.3.6 利用集油井裝置進行分層的油-水分離 66 4.3.7 利用垂直裝置評估分離膜的阻力(RM) 67 4.3.8 利用傾斜裝置進行分層的油-水分離 67 第五章 結果與討論 69 5.1 PET紡織品塗佈PTFE之疏水/親油分離膜的製備 70 5.1.1 PET紡織品塗佈PTFE之潤濕性質 70 5.1.2 PET紡織品塗佈PTFE之SEM照片 73 5.2 PET紡織品塗佈PTFE之疏水/親油分離膜之應用效能評估 74 5.2.1 PET紡織品塗佈PTFE之水突破壓力(WIP) 74 5.2.2 利用集油井(Well wall membrane)評估分離通量 85 5.2.3 利用垂直裝置(Horizontal flat membrane)評估通量之探討 90 5.2.4 比較不同模型所評估出之分離通量 95 5.3 利用PTFE疏水/親油紡織品分離膜分離分層油-水混合物 96 5.3.1 預測傾斜分離裝置的分離過程 96 5.3.2 分離效率 101 5.3.3 預測集油井裝置的分離過程 103 5.3.4 集油井裝置模型的參數討論 107 第六章 結論與建議 110 6.1結論 110 6.2 建議 113 第七章 參考文獻 115

    1. M.R. Riazi, Oil Spill Occurrence, Simulation, and Behavior. 2021: Taylor & Francis Group.
    2. E. Vanem, Ø. Endresen, and R. Skjong, Cost-effectiveness criteria for marine oil spill preventive measures. Reliability Engineering & System Safety, 93(9), 1354 (2008).
    3. M.K. McNutt, R. Camilli, T.J. Crone, G.D. Guthrie, P.A. Hsieh, T.B. Ryerson, O. Savas, and F. Shaffer, Review of flow rate estimates of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences, 109(50), 20260 (2012).
    4. S. Palchoudhury and J.R. Lead, A Facile and Cost-Effective Method for Separation of Oil–Water Mixtures Using Polymer-Coated Iron Oxide Nanoparticles. Environmental Science & Technology, 48(24), 14558 (2014).
    5. Y. Wan, B. Wang, J.S. Khim, S. Hong, W.J. Shim, and J. Hu, Naphthenic Acids in Coastal Sediments after the Hebei Spirit Oil Spill: A Potential Indicator for Oil Contamination. Environmental Science & Technology, 48(7), 4153 (2014).
    6. A.A. Al-Majed, A.R. Adebayo, and M.E. Hossain, A sustainable approach to controlling oil spills. J Environ Manage, 113, 213 (2012.)
    7. A. Dhaka and P. Chattopadhyay, A review on physical remediation techniques for treatment of marine oil spills. J Environ Manage, 288, 112428 (2021).
    8. J.V. Mullin and M.A. Champ, Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin, 8(4), 323 (2003).
    9. J. Aurell and B.K. Gullett, Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. Environmental Science & Technology, 44(24), 9431 (2010).
    10. J. Fritt-Rasmussen and P.J. Brandvik, Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments. Mar Pollut Bull, 62(8), 1780 (2011).
    11. V. Broje and A.A. Keller, Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environmental Science & Technology, 40(24), 7914 (2006).
    12. R.R. Lessard and G. DeMarco, The Significance of Oil Spill Dispersants. Spill Science & Technology Bulletin, 6(1), 59 (2000).
    13. E.B. Kujawinski, M.C. Kido Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, and M.C. Redmond, Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol, 45(4), 1298 (2011).
    14. J. Michel and M. Fingas, Oil Spills: Causes, Consequences, Prevention, and Countermeasures, in Fossil Fuels. p. 159.
    15. A.A. Abdel-Naby, Oily wastewater separator enhancement using hybrid system drum skimmer integrated with air injection & surface air stream. Proceedings of ISER International Conference, (2018).
    16. A. Lewis, B. Ken Trudel, R.C. Belore, and J.V. Mullin, Large-scale dispersant leaching and effectiveness experiments with oils on calm water. Marine Pollution Bulletin, 60(2), 244 (2010).
    17. R. Boopathy, S. Shields, and S. Nunna, Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA. Appl Biochem Biotechnol, 167(6), 1560 (2012).
    18. E.Z. Ron and E. Rosenberg, Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol, 27, 191 (2014).
    19. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, and S. Kokot, Journal of Porous Materials, 10(3), 159 (2003).
    20. M.M. Radetić, D.M. Jocić, P.M. Jovančić, Z.L. Petrović, and H.F. Thomas, Recycled Wool-Based Nonwoven Material as an Oil Sorbent. Environmental Science & Technology, 37(5), 1008 (2003).
    21. A. Bayat, S.F. Aghamiri, A. Moheb, and G.R. Vakili-Nezhaad, Oil Spill Cleanup from Sea Water by Sorbent Materials. Chemical Engineering & Technology, 28(12), 1525 (2005).
    22. Q. Zhu, Q. Pan, and F. Liu, Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. The Journal of Physical Chemistry C, 115(35), 17464 (2011).
    23. O. Karatum, S.A. Steiner, 3rd, J.S. Griffin, W. Shi, and D.L. Plata, Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery. ACS Appl Mater Interfaces, 8(1), 215 (2016).
    24. G. Kwon, E. Post, and A. Tuteja, Membranes with selective wettability for the separation of oil–water mixtures. MRS Communications, 5(3), 475 (2015).
    25. R.K. Gupta, G.J. Dunderdale, M.W. England, and A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 5(31), 16025 (2017).
    26. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1 (1997.)
    27. C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany, 79(6), 667 (1997).
    28. J. Zimmermann, S. Seeger, and F.A. Reifler, Water Shedding Angle: A New Technique to Evaluate the Water-Repellent Properties of Superhydrophobic Surfaces. Textile Research Journal, 79(17), 1565 (2009).
    29. Z. Chu and S. Seeger, Superamphiphobic surfaces. Chemical Society Reviews, 43(8), 2784 (2014).
    30. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5(1), 31 (2017).
    31. R.N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988 (1936).
    32. A.B.D. Cassie and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 40(0), 546 (1944).
    33. X. Liu, Y. Liang, F. Zhou, and W. Liu, Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 8(7), 2070 (2012).
    34. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98 (2013).
    35. X.J. Feng and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 18(23), 3063 (2006).
    36. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, and R.E. Cohen, Designing Superoleophobic Surfaces. Science, 318(5856), 1618 (2007).
    37. J. Bico, U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1), 41 (2002).
    38. E.W. Washburn, Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc Natl Acad Sci U S A, 7(4), 115 (1921).
    39. J. Song, S. Huang, Y. Lu, X. Bu, J.E. Mates, A. Ghosh, R. Ganguly, C.J. Carmalt, I.P. Parkin, W. Xu, and C.M. Megaridis, Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Interfaces, 6(22), 19858 (2014).
    40. S. Oh, S. Ki, S. Ryu, M.C. Shin, J. Lee, C. Lee, and Y. Nam, Performance Analysis of Gravity-Driven Oil-Water Separation Using Membranes with Special Wettability. Langmuir, 35(24), 7769 (2019).
    41. D. Deng, D.P. Prendergast, J. MacFarlane, R. Bagatin, F. Stellacci, and P.M. Gschwend, Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Applied Materials & Interfaces, 5(3), 774 (2013).
    42. C.-H. Xue, Y.-R. Li, J.-L. Hou, L. Zhang, J.-Z. Ma, and S.-T. Jia, Self-roughened superhydrophobic coatings for continuous oil–water separation. Journal of Materials Chemistry A, 3(19), 10248 (2015).
    43. Z. Wang, Y. Xu, Y. Liu, and L. Shao, A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. Journal of Materials Chemistry A, 3(23), 12171 (2015).
    44. S. Qiu, L. Hou, J. Liu, F. Guo, Y. Zhang, L. Zhang, K. Liu, N. Wang, and Y. Zhao, High-flux, continuous oil spill collection by using a hydrophobic/oleophilic nanofibrous container. RSC Advances, 7(32), 19434 (2017).
    45. X. Su, H. Li, X. Lai, L. Zhang, X. Liao, J. Wang, Z. Chen, J. He, and X. Zeng, Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. ACS Appl Mater Interfaces, 10(4), 4213 (2018).
    46. W. Qing, X. Shi, Y. Deng, W. Zhang, J. Wang, and C.Y. Tang, Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. Journal of Membrane Science, 540, 354 (2017).
    47. H. Liu, A. Raza, A. Aili, J. Lu, A. AlGhaferi, and T. Zhang, Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment. Scientific Reports, 6(1), 25414 (2016).
    48. M.J. Kwak, Y. Yoo, H.S. Lee, J. Kim, J.-W. Yang, J.-I. Han, S.G. Im, and J.-H. Kwon, A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes. ACS Applied Materials & Interfaces, 8(1), 600 (2016).
    49. Q. Wen, J. Di, L. Jiang, J. Yu, and R. Xu, Zeolite-coated mesh film for efficient oil–water separation. Chemical Science, 4(2), 591 (2013).
    50. G.J. Dunderdale, C. Urata, T. Sato, M.W. England, and A. Hozumi, Continuous, High-Speed, and Efficient Oil/Water Separation using Meshes with Antagonistic Wetting Properties. ACS Applied Materials & Interfaces, 7(34), 18915 (2015).
    51. Y.T. Lim, N. Han, W. Jang, W. Jung, M. Oh, S.W. Han, H.Y. Koo, and W.S. Choi, Surface Design of Separators for Oil/Water Separation with High Separation Capacity and Mechanical Stability. Langmuir, 33(32), 8012 (2017).
    52. E. Coene, O. Silva, and J. Molinero, A numerical model for the performance assessment of hydrophobic meshes used for oil spill recovery. International Journal of Multiphase Flow, 99, 246 (2018).
    53. K.H. Jensen, A.X.C.N. Valente, and H.A. Stone, Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Physics of Fluids, 26(5), 052004 (2014).
    54. Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Free-Standing Single-Walled Carbon Nanotube Network Films. Advanced Materials, 25(17), 2422 (2013).
    55. X. Peng, J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, Ultrafast permeation of water through protein-based membranes. Nat Nanotechnol, 4(6), 353 (2009).
    56. R.W. Baker, Membrane technology and applications. 2012: John Wiley & Sons.

    下載圖示 校內:2024-08-04公開
    校外:2024-08-04公開
    QR CODE