| 研究生: |
羅盛耀 Luo, Sheng-Yao |
|---|---|
| 論文名稱: |
疏水/親油紡織品分離膜集油井的設計及其在水面浮油清除和回收之應用 Designing Collection Well for Oil Spill Cleanup and Recovery by Using Hydrophobic/Oleophilic Fabrics |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 水性製程 、疏水/親油紡織品分離膜 、效能評估 、浮油清除和回收 、集油井設計 、理論預測 |
| 外文關鍵詞: | Hydrophobic/oleophilic fabric membrane, Oil spill cleanup, Oil collection well design, Theoretical model |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有別於傳統處理水面上油污外洩問題往往耗時、耗能且效率低。本研究是以水性製程將高分子奈米粒子製備出疏水/親油紡織品分離膜並設計可以應用於大水域水面上浮油清除和回收之集油井並進行理論預測其分離過程。在本研究中設計出一簡易裝置來評估油體流經疏水/親油紡織品分離膜通量的表現,並藉由定義resistance of membrane (RM)來評估油體流經分離膜之阻力,以此為基礎可以用於預測分層油-水混合物之分離狀況,以提供實際應用設計參考,從結果中指出實驗和理論模型的決定係數(R2>0.9941),代表其方法具備相當高之準確性。藉由調控不同的水性鐵氟龍分散液(PTFE DISP)濃度與浸鍍次數,可以創造出不同孔徑大小及膜厚之分離膜,並影響其通量及突破壓力數值大小,從結果中顯示雖然在分離過程中需要較高的通量,但同時也會有著突破壓力較小的問題。此外,在本研究中顯示不同物理性質之牛頓流體所量測之RM差異不大,因此推測可以應用於其他牛頓流體通量的預測。
Due to the frequent oil spill problem, the development of new oil-water separation methods with high efficiency, low cost and safety has been the popular research. In this work, competent hydrophobic/oleophilic fabric membranes for separating stratified oil-water mixtures can be fabricated by a simple waterborne polymeric nanoparticle coating process and can be used to build up oil collection wells for the oil spill problems. To predict the mass flux and separation time, we design a simple and small apparatus, and derived the mathematical model for low Re Newtonian fluid. The developed model can be used to determine the membrane performance by a membrane resistance, RM, to the Poiseuille flow of a liquid oil driven by gravity; and the agreement between theoretical and experimental results (R2>0.9941) confirmed the validity of the developed model. By coating with various PTFE DISP concentration and multiple coating times, the effective pore size and thickness of fabrics could be varied, and these results will affect the value of flux and water intrusion pressure (WIP). The WIP decrease as the RM decrease, it means that high flux (RM is small) for separating stratified oil-water mixture might face low hydrophobicity problem. Moreover, a fabric membrane with an as-determined value of RM can be used to accurately predict the separation time of stratified oil-water mixture in specific condition.
1. M.R. Riazi, Oil Spill Occurrence, Simulation, and Behavior. 2021: Taylor & Francis Group.
2. E. Vanem, Ø. Endresen, and R. Skjong, Cost-effectiveness criteria for marine oil spill preventive measures. Reliability Engineering & System Safety, 93(9), 1354 (2008).
3. M.K. McNutt, R. Camilli, T.J. Crone, G.D. Guthrie, P.A. Hsieh, T.B. Ryerson, O. Savas, and F. Shaffer, Review of flow rate estimates of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences, 109(50), 20260 (2012).
4. S. Palchoudhury and J.R. Lead, A Facile and Cost-Effective Method for Separation of Oil–Water Mixtures Using Polymer-Coated Iron Oxide Nanoparticles. Environmental Science & Technology, 48(24), 14558 (2014).
5. Y. Wan, B. Wang, J.S. Khim, S. Hong, W.J. Shim, and J. Hu, Naphthenic Acids in Coastal Sediments after the Hebei Spirit Oil Spill: A Potential Indicator for Oil Contamination. Environmental Science & Technology, 48(7), 4153 (2014).
6. A.A. Al-Majed, A.R. Adebayo, and M.E. Hossain, A sustainable approach to controlling oil spills. J Environ Manage, 113, 213 (2012.)
7. A. Dhaka and P. Chattopadhyay, A review on physical remediation techniques for treatment of marine oil spills. J Environ Manage, 288, 112428 (2021).
8. J.V. Mullin and M.A. Champ, Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin, 8(4), 323 (2003).
9. J. Aurell and B.K. Gullett, Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. Environmental Science & Technology, 44(24), 9431 (2010).
10. J. Fritt-Rasmussen and P.J. Brandvik, Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments. Mar Pollut Bull, 62(8), 1780 (2011).
11. V. Broje and A.A. Keller, Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environmental Science & Technology, 40(24), 7914 (2006).
12. R.R. Lessard and G. DeMarco, The Significance of Oil Spill Dispersants. Spill Science & Technology Bulletin, 6(1), 59 (2000).
13. E.B. Kujawinski, M.C. Kido Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, and M.C. Redmond, Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol, 45(4), 1298 (2011).
14. J. Michel and M. Fingas, Oil Spills: Causes, Consequences, Prevention, and Countermeasures, in Fossil Fuels. p. 159.
15. A.A. Abdel-Naby, Oily wastewater separator enhancement using hybrid system drum skimmer integrated with air injection & surface air stream. Proceedings of ISER International Conference, (2018).
16. A. Lewis, B. Ken Trudel, R.C. Belore, and J.V. Mullin, Large-scale dispersant leaching and effectiveness experiments with oils on calm water. Marine Pollution Bulletin, 60(2), 244 (2010).
17. R. Boopathy, S. Shields, and S. Nunna, Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA. Appl Biochem Biotechnol, 167(6), 1560 (2012).
18. E.Z. Ron and E. Rosenberg, Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol, 27, 191 (2014).
19. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, and S. Kokot, Journal of Porous Materials, 10(3), 159 (2003).
20. M.M. Radetić, D.M. Jocić, P.M. Jovančić, Z.L. Petrović, and H.F. Thomas, Recycled Wool-Based Nonwoven Material as an Oil Sorbent. Environmental Science & Technology, 37(5), 1008 (2003).
21. A. Bayat, S.F. Aghamiri, A. Moheb, and G.R. Vakili-Nezhaad, Oil Spill Cleanup from Sea Water by Sorbent Materials. Chemical Engineering & Technology, 28(12), 1525 (2005).
22. Q. Zhu, Q. Pan, and F. Liu, Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. The Journal of Physical Chemistry C, 115(35), 17464 (2011).
23. O. Karatum, S.A. Steiner, 3rd, J.S. Griffin, W. Shi, and D.L. Plata, Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery. ACS Appl Mater Interfaces, 8(1), 215 (2016).
24. G. Kwon, E. Post, and A. Tuteja, Membranes with selective wettability for the separation of oil–water mixtures. MRS Communications, 5(3), 475 (2015).
25. R.K. Gupta, G.J. Dunderdale, M.W. England, and A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 5(31), 16025 (2017).
26. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1 (1997.)
27. C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany, 79(6), 667 (1997).
28. J. Zimmermann, S. Seeger, and F.A. Reifler, Water Shedding Angle: A New Technique to Evaluate the Water-Repellent Properties of Superhydrophobic Surfaces. Textile Research Journal, 79(17), 1565 (2009).
29. Z. Chu and S. Seeger, Superamphiphobic surfaces. Chemical Society Reviews, 43(8), 2784 (2014).
30. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5(1), 31 (2017).
31. R.N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988 (1936).
32. A.B.D. Cassie and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 40(0), 546 (1944).
33. X. Liu, Y. Liang, F. Zhou, and W. Liu, Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 8(7), 2070 (2012).
34. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98 (2013).
35. X.J. Feng and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 18(23), 3063 (2006).
36. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, and R.E. Cohen, Designing Superoleophobic Surfaces. Science, 318(5856), 1618 (2007).
37. J. Bico, U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1), 41 (2002).
38. E.W. Washburn, Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc Natl Acad Sci U S A, 7(4), 115 (1921).
39. J. Song, S. Huang, Y. Lu, X. Bu, J.E. Mates, A. Ghosh, R. Ganguly, C.J. Carmalt, I.P. Parkin, W. Xu, and C.M. Megaridis, Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Interfaces, 6(22), 19858 (2014).
40. S. Oh, S. Ki, S. Ryu, M.C. Shin, J. Lee, C. Lee, and Y. Nam, Performance Analysis of Gravity-Driven Oil-Water Separation Using Membranes with Special Wettability. Langmuir, 35(24), 7769 (2019).
41. D. Deng, D.P. Prendergast, J. MacFarlane, R. Bagatin, F. Stellacci, and P.M. Gschwend, Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Applied Materials & Interfaces, 5(3), 774 (2013).
42. C.-H. Xue, Y.-R. Li, J.-L. Hou, L. Zhang, J.-Z. Ma, and S.-T. Jia, Self-roughened superhydrophobic coatings for continuous oil–water separation. Journal of Materials Chemistry A, 3(19), 10248 (2015).
43. Z. Wang, Y. Xu, Y. Liu, and L. Shao, A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. Journal of Materials Chemistry A, 3(23), 12171 (2015).
44. S. Qiu, L. Hou, J. Liu, F. Guo, Y. Zhang, L. Zhang, K. Liu, N. Wang, and Y. Zhao, High-flux, continuous oil spill collection by using a hydrophobic/oleophilic nanofibrous container. RSC Advances, 7(32), 19434 (2017).
45. X. Su, H. Li, X. Lai, L. Zhang, X. Liao, J. Wang, Z. Chen, J. He, and X. Zeng, Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. ACS Appl Mater Interfaces, 10(4), 4213 (2018).
46. W. Qing, X. Shi, Y. Deng, W. Zhang, J. Wang, and C.Y. Tang, Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. Journal of Membrane Science, 540, 354 (2017).
47. H. Liu, A. Raza, A. Aili, J. Lu, A. AlGhaferi, and T. Zhang, Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment. Scientific Reports, 6(1), 25414 (2016).
48. M.J. Kwak, Y. Yoo, H.S. Lee, J. Kim, J.-W. Yang, J.-I. Han, S.G. Im, and J.-H. Kwon, A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes. ACS Applied Materials & Interfaces, 8(1), 600 (2016).
49. Q. Wen, J. Di, L. Jiang, J. Yu, and R. Xu, Zeolite-coated mesh film for efficient oil–water separation. Chemical Science, 4(2), 591 (2013).
50. G.J. Dunderdale, C. Urata, T. Sato, M.W. England, and A. Hozumi, Continuous, High-Speed, and Efficient Oil/Water Separation using Meshes with Antagonistic Wetting Properties. ACS Applied Materials & Interfaces, 7(34), 18915 (2015).
51. Y.T. Lim, N. Han, W. Jang, W. Jung, M. Oh, S.W. Han, H.Y. Koo, and W.S. Choi, Surface Design of Separators for Oil/Water Separation with High Separation Capacity and Mechanical Stability. Langmuir, 33(32), 8012 (2017).
52. E. Coene, O. Silva, and J. Molinero, A numerical model for the performance assessment of hydrophobic meshes used for oil spill recovery. International Journal of Multiphase Flow, 99, 246 (2018).
53. K.H. Jensen, A.X.C.N. Valente, and H.A. Stone, Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Physics of Fluids, 26(5), 052004 (2014).
54. Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Free-Standing Single-Walled Carbon Nanotube Network Films. Advanced Materials, 25(17), 2422 (2013).
55. X. Peng, J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, Ultrafast permeation of water through protein-based membranes. Nat Nanotechnol, 4(6), 353 (2009).
56. R.W. Baker, Membrane technology and applications. 2012: John Wiley & Sons.