| 研究生: |
曾彥迪 Tseng, Yan-Di |
|---|---|
| 論文名稱: |
以混摻室溫離子液體之模版高分子薄膜修飾電極進行對膽紅素之電流式感測 Amperometric sensing of bilirubin via an imprinted polymer modified electrode doped with a room-temperature ionic liquid |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 膽紅素 、分子模版高分子 、室溫離子液體 、電流式感測 |
| 外文關鍵詞: | bilirubin, molecularly imprinted polymers, room-temperature ionic liquid, amperometric sensing |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膽紅素 (Bilirubin),為人體血紅蛋白代謝產物之一,大部分膽紅素來自於衰老紅血球中血紅素的分解代謝,而血紅素的濃度可反映肝功能是否異常。因此血清中膽紅素的濃度常是作為判斷肝臟疾病的重要生理指標。
本研究是以分子模印 (molecular imprinting) 技術,結合室溫離子液體 (room-temperature ionic liquid, RTIL),以發展具特異性吸附,且具有電化學感電性之膽紅素模版高分子薄膜,以此製備對膽紅素具專一性的電流式感測電極,並進行相關探討。
混摻室溫離子液體混摻之模版高分子 (room-temperature ionic liquid doped molecularly imprinting polymer, RTIL-MIP) 薄膜修飾電極之製備,乃是以膽紅素為模版分子,以單體methacrylic acid (MAA) 與交聯劑 ethylene glycol dimethylacrylate (EGDMA),搭配1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([BMIM][Tf2N]) 室溫離子液體,在 2,2-azo-bis-isobutyronitrile (AIBN) 起始劑 作用下,進行熱聚合,於金電極表面形成膽紅素模版高分子薄膜,經SEM影像觀察可知,薄膜厚度相當均勻;平均厚度約為1.98 ± 0.03 μm。經萃洗移除膽紅素,此高分子薄膜表面即可留下對膽紅素分子具辨識性之孔洞 (cavity)。因膽紅素在適當電位下,具有電化學反應活性,因此就可利用電流感測方式分析其濃度。
本研究亦探討膽紅素感測訊號與模印因子 (imprinting factor) 之關係及影響模印效果之變數。RTILs有助於提升模版高分子電極之感測訊號,且此電極在低濃度膽紅素範圍下 (0.2 ~ 1.0 mg/dL) 具有相當好的模印效果,模印因子可達5.52 ± 0.09,靈敏度為0.367 ± 0.019 μA/cm2/mg/dL。而RTIL-MIP電極在膽綠素共存下對膽紅素之選擇性約為2.13 ± 0.02。在干擾性測試中,儘管在小牛血清的環境下,仍可偵測出膽紅素,且靈敏度與未添加膽紅素時差異不大,證實本實驗所製備的RTIL-MIP電極具有抗血清干擾的能力。
Bilirubin is the metabolite of human hemoglobin. The concentration of bilirubin in serum is often regarded as an important physiological indicator of liver diseases.
The electrochemical sensing of bilirubin was developed the molecularly imprinted polymer film modified electrode doped with room-temperature ionic liquids (RTILs) is investigation of fabricated in this work for the specific binding and electrochemical properties.
For the preparation of the imprinted polymer, bilirubin was the template molecule, by using molecular imprinting methacrylic acid (MAA) and ethylene glycol dimethylacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. RTIL, 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([BMIM][TF2N]) for the synthesis of bilirubin imprinted polymer film by heated polymerization in the presence of the initiator 2,2-azo-bis-isobutyronitrile (AIBN). The scanning electron microscopic image show that the imprinted polymer film thus synthesized was rather uniform and the average thickness was approximate 1.98 ± 0.03 m。After extraction, a large portion of bilirubin templates was removed. Therefore, the polymer film would be left with cavity specific for the binding of bilirubin. Via which, the electrochemical detection of bilirubin could be possible to carry out.
In summary, RTILs may improve the signals of the MIP electrodes. The imprinting factor of 5.52 ± 0.09 and the sensitivity of 0.367 ± 0.019 μA/cm2/mg/dL cound be achieved at the low concentration range (0.2-1.0 mg/dL) from the RTIL-MIP electrode fabricated in this work. The selectivity of bilirubin against biliverdin is 2.13 ± 0.02. For interference test, bilirubin was further detected by the RTIL-MIP electrode in the presence of bovine calf serum (BCS) and the sensitivity was nearly the same as the background to background of water. Thus, it confirms the RTIL-MIP electrode may avoid the interference from serum. The results indicate the feasibility of using the RTIL-MIP electrode for the detection of bilirubin in serum.
[1] B. R. Eggins, Chemical Sensors and Biosensors, John Wiley, 2002
[2] T. Vo-Dinh, B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius J Anal Chem, 366, 540-551, 2000
[3] B. Lu, M. R. Smyth, R. O’Kennedy, Oriented immobilization of antibodies and its applications in immunoassays and immunosensors, Analyst, 121, 29R-32R, 1996
[4] M. J. Syu, Y. S. Chang, Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix, Biosens Bioelectron, 24, 2671-2677, 2009
[5] F. Davis, M.A. Hughes, A.R. Cossins, S.P. Higson, Single gene differentiation by DNA-modified carbon electrodes using an AC impedimetric approach. Anal Chem, 79, 1153-1157, 2007
[6] 楊竣翔,以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之電子/質子傳導方式進行對膽紅素之電化學感測,國立成功大學化學工程學系碩士論文,2007
[7] 邱琮傑,以分子模版材料製備之電極進行對膽紅素感測之探討,國立成功大學化學工程學系碩士論文,2006
[8] J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, N. Sugimoto, SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles, Anal Chem, 77, 4282-4285, 2005
[9] M.A. Cooper, Optical biosensors in drug discovery, Nat Rev Drug Discov, 1, 515-528, 2002
[10] K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecul, 4,1100-1120, 2003
[11] B.R. Eggins, ISFET, Theory and Practice, IEEE Sensor Conference, Toronto, 2003
[12] B.H. van der Schoot, P. Bergveld, ISFET Based Enzyme Sensors, Biosensors, 3, 161-186, 1987
[13] Douglas A. Skoog, F. James Holler, R. Stanley, Principles of Instrumental Analysis, 5th Ed., 1997
[14] H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chimi Acta, 594, 175-183, 2007
[15] T.T.N. Lien, M. Chikae, Y. Ukita, Y. Takamura, Labelless impedance immunosensor based on polypyrrole-pyrolecarborxylic acid copolymer for hCG detection, Talanta, 85, 2576-2580, 2011
[16] D.C. Apodaca, R.B. Pernites, R. Ponnapati, F.R. Del Mundo, R.C. Advincula, Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A, Macromolecules, 44, 6669-6682, 2011
[17] L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem Soc Rev, 40, 2922-2942, 2011
[18] C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O'Mahony and M. J. Whitcombe, J. Mol. Recognit., Review: molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J Mol Recognit, 19, 106-180, 2006
[19] J.O. Mahony, K. Nolan, M.R. Smyth, B. Mizaikoff, Molecularly imprinted polymers-
potential and challenges in analytical chemistry, Anal Chimi Acta, 534, 31-39, 2005
[20] Z.H. Meng, J.F. Wang, L.G. Zhou, Q.H. Wang, D.Q. Zhu, High performance cocktail functional monomer for making molecule imprinting polymer, Anal Sci, 15, 141-144, 1999
[21] K. Noworyta, W. Kutner, C.A. Wijesinghe, S.G. Srour, F. D’Souza, Nicotine, cotinine and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors, Anal Chem, 84, 2154-2163, 2012
[22] A.G. Mayes, M.J. Whitcombe, Synthetic strategies for the generation of molecularly imprinted organic polymers, Adv Drug Delivery Rev, 57, 1742-1778, 2005
[23] M. Riskin, Y. Ben-Amram, R. Tel-Vered, V. Chegel, J. Almog, I. Willner, Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate, Anal Chem, 83, 3082-3088, 2011
[24] M. Riskin, R. Tel-Vered, T. Bourenko, E. Granot, I. Willner, imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions, J Am Chem Soc, 130, 9726-9733, 2008
[25] K. Karim, F. Breton, R. Rouillon, E.V. Piletska, A. Guerreiro, I. Chianella, S.A. Piletsky, How to find effective functional monomers for effective molecularly imprinted polymers ? , Adv Drug Delivery Rev, 57, 1795-1808, 2005
[26] G. Guan, S. Wang, H. Zhou, K. Zhang, R. Liu, Q. Mei, S. Wang, Z. Zhang, Molecularly imprinted polypyrrole nanonecklaces for detection of herbicide through molecular recognition-amplifying current response, Anal Chimi Acta, 702, 239-246, 2011
[27] H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal Chimi Acta, 542, 83-89, 2005
[28] C. L. Choong, J. S. Bendall, W. I. Milne, Carbon nanotube array: A new MIP platform, Biosens and Bioelectron, 25, 652-656, 2009
[29] T. Dorner, B. Knipp, D.A. Lightner, Heteronuclear NOE analysis of bilirubin solution conformation and intramolecular hydrogen bonding, Tetrahedron, 53, 8, 2697-2716, 1997
[30] D.A. Lightner, A.F. McDonagh, Molecular mechanisms of phototherapy for neonatal jaundice, Acco Chem Research, 17, 417-424, 1984
[31] A.F. McDonagh, Turning green to gold, Natu Struc Biology, 8, 3, 198-200, 2001
[32] L. Gilmore, C.J. Garvey, Investigation of jaundice, Medicine, 30, 11-13, 2002
[33] P. Kannan, H. Chen, V.T. W. Lee, D.H. Kim, Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol–gel film modified electrode, Talanta, 86, 400-407, 2011
[34] A.G. Cherlan, S.J. Soldin, J.G. Hill, Automated jendrassik-grof method for measurement of bilirubin in serum with the greiner selective analyzer, and comparison with the method involving diazotized 2,4-dichioroaniline, Clin Chem, 27, 5, 748-752, 1981
[35] J.D. Van Norman and R. Szentirmay, Chemistry of bilirubin and biliverdin in N,N-dimethylformamide, Anal Chem, 46, 11, 1456-1464, 1974
[36] CH. Slifstein, M. Ariel, The electrochemistry of bilirubin in dimethylsulfoxide, Electroanalyt Chem Interja Electrochem, 48, 447-463, 1973
[37] F. Moussa, G. KaDoute, C. Herrenknecht, P. Levillain, F. Trivin, Electrochemical oxidation of bilirubin and biliverdin in dimethylsulfoxide, Anal Chem, 60, 1179-1185, 1988
[38] D. Wei, A. Ivaska, Applications of ionic liquids in electrochemical sensors, Anal Chimi Acta, 607, 126–135, 2008
[39] J. Lua, F. Yan, J. Texterc, Advanced applications of ionic liquids in polymer science, Progress in Polymer Science, 34, 431-448, 2009
[40] M.J.A. Shiddiky, A.A.J. Torriero, Application of ionic liquids in electrochemical sensing systems, Biosens Bioelectron, 26,1775-1787, 2011
[41] M. Opallo, A. Lesniewski, A review on electrodes modified with ionic liquids, J Electro Chem, 656, 2-16, 2011
[42] H.F. Wang, Y.Z. Zhu, X.P. Yan, R.Y. Gao, J.Y. Zheng, A room temperature ionic liquid (RTIL)-mediated, non-hydrolytic sol–gel methodology to prepare molecularly imprinted, silica-based hybrid monoliths for chiral separation, Adv Mat, 18, 3266-3270, 2006
[43] C. He, Y. Long, J. Pan, K. Li, F. Liu, Moleculrly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone, Talanta, 74, 1126-1131, 2008
[44] X. Luo, R. Dong, S. Luo, Y. Zhan, X. Tu, L. Yang, Preparation of water-compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer, J Appl Poly Sci, 2884-2890, 2013
[45] M. Tian, W. Bi, K. H. Row, Molecular imprinting in ionic liquid-modified porous polymer for recognitive separation of three tanshinones from Salvia miltiorrhiza Bunge, Anal Bioanal Chem, 399, 2495-2502, 2011
[46] M.J. Syu, T.C. Chiu, C.Y. Lai, Y.S. Chang, Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film, Biosens Bioelectron, 22 , 550-557, 2006
[47] 石家銘,以分子模版 poly(AMPS-co-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測,國立成功大學化學工程學系碩士論文,2008
[48] 吳岸樺,膽紅素模版高分子薄膜之製備及在感測上之應用與探討,國立成功大學化學工程學系碩士論文,2004
[49] R. Brodersen, Bilirubin solubility and interaction with albumin and phospholipid, J Bio Chem, 254, 7, 2364-2369, 1979
校內:2023-12-31公開