| 研究生: |
林佩君 Lin, Pei-Chung |
|---|---|
| 論文名稱: |
雙軸式材料測試系統之設計與實現及其在橡膠軸承之應用 Design and Realization of a Biaxial Material Characterization System for Elastomer Bearing Applications |
| 指導教授: |
陳國聲
Chen, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 218 |
| 中文關鍵詞: | 橡膠軸承 、雙軸測試系統設計 、壓縮測試 、DMA 、有限元素分析 、PDMS 、3110 RTV rubber |
| 外文關鍵詞: | elastomer bearing, biaxial test system, compression test, DMA, finite element analysis (FEA), PDMS, 3110 RTV rubber |
| 相關次數: | 點閱:130 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,根據橡膠軸承結構因受拘束時所產生之強烈結構剛性異向性行為等特性,逐漸引起研究撓性精密機械設計領域的學者之注意,並試圖引進橡膠軸承結構搭配精密機械設計與控制,藉以取代傳統撓性機構為主之精密機械控制。然而,橡膠材料之性質在不同的應用環境下,其特性亦有所差異,因此在應用上必須考慮材料的行為特性,所以需要針對橡膠材料發展相對應的材料測試系統。本文參考MIT的Barton等人所建立的材料測試系統之優點,並針對其缺點進行改良發展出新型雙軸式材料測試系統,得以對材料之機械性質作完善的測試。本文在雙軸式材料測試系統之製作部分,首先進行概念性設計,接著針對材料測試機構之次系統作設計。系統整合完成後,進行初步實驗驗證系統之正確性,並進行系統之性能分析,清楚掌握系統的操作性能。接著,本文以發展之雙軸式材料測試系統對PDMS和3110 RTV rubber進行機械性質測試實驗,用以測得材料的機械性質,包括楊氏模數、壓縮剛性與形狀因子、環境溫度、偏轉角度、作動頻率等參數之關係,以及材料的應力鬆弛行為與時間鬆弛常數和動態性能表現。另一方面,本文使用有限元素軟體ABAQUS針對目前實驗上無法定性定量探討之參數進行模擬分析,初步探討參數對材料性質之影響。模擬上主要針對橡膠軸承結構的幾何形貌、性質特性、邊界條件與負載形式等分別探討其與材料壓縮剛性之關係。模擬結果顯示非完美的橡膠軸承結構,例如內部含有氣泡、橡膠與金屬介面接合不完美、幾合不對稱等的橡膠軸承在壓縮剛性的表現上較理想之橡膠軸承為差。最後,本文使用雙軸式材料試系統進行測試實驗與有限元素模擬分析之結果,能提供工程應用中對橡膠軸承結構設計上的參考依據,未來希望能藉由對橡膠軸承結構其機械性質的了解,增加更多應用於精密機械的領域,例如精密定位平台設計與控制等方面之應用。
Elastomer bearings have been widely applied in seismic engineering and were recently introduced into precision machine design field. By using their stiffness anisotropy and simple structural design, elastomer bearings could possibly achieve the same function as that of those much larger compliance mechanisms and therefore this represents a possible advantage in precision machine design. However, the mechanical behaviors of rubbers are relatively complicated and must be carefully considered for precision machine applications and the existed testing systems may not be adequate and a novel elastomer testing system design should be investigated. In this thesis, based on the design proposed by Barton at MIT, a novel biaxial testing system is proposed and realized by integrating a voice coil actuator, a capacitive probe, a load cell, and a rotating stage under a simple temperature controlled environment. This system is then validated by comparing the PDMS punch test results with the previous reported data. Detailed characterizations have been conducted for exploring the performance of this system and identifying the key controlling factors for future performance enhancement. In parallel, essential finite element rubber compression and shearing analyses are also conducted for guiding the subsequent material testing and to elucidate the possible design and operation concerns for elastomer bearing operations. Finally, essential material characterizations are conducted for evaluating the behavior of structural stiffness at different shape factors, temperatures, loading types, and operating frequencies. By correcting the fundamental flaws of the design provided by Barton, this system represents a more sophisticated design for achieving more accurate material properties characterization in order to support subsequent precision motion system designs.
[1]J.M. Kelly, Earthquake-resistance design with rubber, 2nd ed. Spring-Verlag, London, 1996.
[2]C. J. Derham, J. M. Kelly, and A. G. Thomas, “Nonlinear natural rubber bearings for seismic isolation,” Nuclear Engineering and Design, vol. 84, no. 3, pp. 417-428, Feb. 1985.
[3]T. Miyama, K. Masuda, and D. Feng, “A study on characteristics of rubber bearings considering rotation angle and compressive force dependence,” 13th World Conf. on Earthquake Engineering, Vancouver, Canada, Aug. 2004.
[4]A. R. Payne, P. W. Allen, and P. B. Lindley. Use of rubber in engineering. Maclaren and Sons London, 1996.
[5]B. S. Nau, “The state of the art of rubber-seal technology,” Rubber Chemistry and Technology, vol. 60, no. 3, pp. 381-416, July 1987.
[6]A. Nashif, D. Jones, and J. Henderson, Vibration damping, Wiley, 1985.
[7]E. I. Rivin. Stiffness and damping in mechanical design, Marcel Dekker, 1999.
[8]A. E. Barton and D. L. Trumper, “Study of rubber bearings and its applicability in precision machines,” Proc. 2005 ASPE Annual Meeting, Norfolk, VA, October 9-14, 2005.
[9]A. E. Barton-Martinelli, “Rubber bearings for precision positioning systems,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2005.
[10]TestResources lnc., 橡膠材料相關測試系統,
http://www.testresources.net/testing/applications/applications/elastomer-rubber-testing-equipment_c121/
[11]J. M. Paros and L. Weisbord, “How to design flexure hinge,” Machine Design, vol. 37, no. 27, pp. 151-157, Nov. 1965.
[12]J. Kelly and D. A. Konstantinidis, Mechanics of rubber bearings for seismic and vibration isolation, Wiley, 2011.
[13]C. R. Brackbill, “Helicopter rotor aeroelastic analysis using a refined elastomeric damper model,” Ph.D. dissertation, Department of Aerospace Engineering, The Pennsylvania State University, USA, 2000.
[14]homebuiltairplanes.com., 直升機轉子單元,
http://www.homebuiltairplanes.com/forums/hangar-flying/4127-i-wonder-if-jake-can-do.html
[15]D. Kluk, “An advanced fast steering mirror for optical communication,” M. S. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2007.
[16]R. W. Smith, “Dynamic consideration for composite metal-rubber laminate acoustic power coupling bellows with application to thermoacoustic refrigeration,” Ph.D. dissertation, The Pennsylvania State University, USA, 2008.
[17]林佩君、陳國聲,” 新型橡膠材料測試系統之設計與實現”,中國機械工程學會第三十屆全國學術研討會,2013。
[18]鄧諺舉、陳國聲,” 橡膠軸承精密定位平台之設計、分析、控制”,中國機械工程學會第三十屆全國學術研討會,2013。
[19]洪榮燦、陳國聲,”以有限元素橡膠軸承之超彈模擬與線性解析模型之分析比較”,中國機械工程學會第三十屆全國學術研討會,2013。
[20]J.W. Ryu, D.G. Gweon, and K.S.Moon, “Optimal design of a flexure hinge based XYθ wafer stage,” Precision Engineering, vol. 21, no. 1, pp. 18-28, July 1997.
[21]A. N. Gent. Engineering with rubber: how to design rubber components. Hanser Publication, Munich, Germany, 2001.
[22]D. P. Cuff., “Electromagnetic nanopositioner.” M. S. thesis, Department of Mechancial Engineering, Massachusetts Institute of Technology, USA, 2006.
[23]S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka, “High bandwidth nano-positioner: a robust control approach,” Review of Scientific Instruments, vol. 73, no. 9, pp. 3232-3241, Sep. 2002.
[24]A. Ciesielski, An introduction to rubber technology, Rapra Technology Limited, 1999.
[25]Well-Link Industry Co.,Ltd., 橡膠支座,
http://www.bridgebearing.net/tw/rubber-bearings.html
[26]Well-Link Industry Co.,Ltd., 鉛芯橡膠支座,
http://www.bridgebearing.net/tw/lead-rubber-bearings.html
[27]E. I. Rivin, “Properties and prospective applications of ultra thin layered rubber-metal laminates for limited travel bearings”, Tribology International, vol. 16, no. 1, pp. 17-25, Feb. 1983.
[28]J. Kadlowec, D. Gerrard, and H. Pearlman, “Coupled axial–torsional behavior of cylindrical elastomer bushings,” Polymer Testing, vol. 28, no. 5, pp. 139-144, Apr. 2009.
[29]維基百科,Arruda-Boyce model介紹
http://en.wikipedia.org/wiki/Arruda%E2%80%93Boyce_model
[30]O. H. Yeoh, “Some forms of the strain energy function for rubber,” Rubber Chemistry and Technology, vol.66, no. 5, pp. 754-771, Nov. 1993.
[31]E. M. Arruda and M. C. Boyce, “A three-dimensional model for the large stretch behavior of rubber elastic materials,” Journal of Mechanics and Physics of Solids, vol. 41, no. 2, pp. 389-412, Feb. 1993.
[32]R. M. Christensen, Theory of viscoelasticity (an introduction), Academic Press, 1982.
[33]P. K. Freakley and A. R. Payne. Theory and practice of engineering with rubber. Applied Science, 1978.
[34]P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11-16, 1979.
[35]P. B. Lindley. Engineering design with natural rubber. The Malaysian Rubber’s Research Association, 1970.
[36]A. N. Gent and P. B. Lindley, “ The compression of bonded rubber blocks,” Proceedings of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 111-122, June 1959.
[37]A. N. Gent, “Elastic stability of rubber compression springs,” Journal of Mechanical Engineering Science, vol. 6, no. 4, pp. 318-326, Dec. 1964.
[38]A. R. Payne, “Effect of compression on the shear modulus of rubber,” Rubber Chemistry and Technoloty, vol. 63, no. 3, pp. 675-681, July 1963.
[39]M. S. Chaihoub and J. M. Kelly, “Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings,” International Journal of Solids and Structures, vol. 26, no.7, pp.743–760, 1990.
[40]H.-C. Tsai and C.-C. Lee, “Compressive stiffness of elastic layers bonded between rigid plates,” International Journal of Solids and Structures, vol.35, no.23, pp.3053-3069, Aug. 1998.
[41]J. Vernon, Introduction to engineering materials (3rd edition). MacMillan press, 1993.
[42]J. M. Gere, Mechanics of materials(5th edition). Nelson Thornes, Cheltenham, 2002.
[43]R. C. Hibbeler. Mechanics of materials, 8th edition. Prentice Hall, New Jersey, USA, 2010.
[44]P. A. Hilton Ltd., HSM43 Torsion testing machine,
http://www.p-a-hilton.co.uk/products/HSM43-Torsion-Testing-Machine-100Nm
[45]H. F. Brinson, and L.C. Brinson, Polymer engineering science and viscoelasticity an introduction, Springer Science Business Media, LLC, 2008.
[46]K. P. Menard, Dynamic mechanical analysis: a practical introduction. CRC press LLC, 1999.
[47]ASTM D 732-10, “Standard test method for shear strength of plastics by punch tool,” ASTM, 2010.
[48]ASTM D 945-06, “Standard test methods for rubber properties in compression or shear (mechanical oscillograph),” ASTM, 2006.
[49]TestResources lnc., 美國TestResources公司相關橡膠材料測試系統,
http://www.testresources.net/testing/rubber-testing/
[50]Instron Inc., 英斯特朗公司相關橡膠材料測試系統,
http://www.instron.com.tw/wa/solutions/solutions_by_element.aspx?ParentID=136
[51]W. Nie, B.song, Y. Ge, W.W. Chen, and T.Weerasooriya, “Dynamic tensile testing of soft materials,” Experimental Mechanics, vol. 49, no. 4, pp.451-458, Aug. 2009.
[52]許瑞峰, 微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用, 國立成功大學機械系碩士論文, 2003。
[53]廖彥鳴, 軟材料之機械性質測試與其在半導體製程真空設備、生醫量測及軟板傳輸之應用, 國立成功大學機械系碩士論文, 2008。
[54]S. T. Smith and D. G. Chetwynd, Foundations of ultraprecision mechanism design. Gordon and Breach Science Publishers, USA, 1994.
[55]吳南陽, 音圈馬達簡介-設計、控制與應用(上、下), 光電資訊雜誌, no. 6-7,頁36-42, 1990年。
[56]陳錫桓,電磁學─原理與範例─,中央圖書出版社,1986。
[57]SMME司麥德國際股份有限公司, 音圈馬達AVM系列規格表,
http://www.smmc.com.tw/Akribis/AVM.html
[58]National Instruments Corporation., 資料擷取卡NI-9215規格表,
http://sine.ni.com/nips/cds/view/p/lang/zht/nid/208793
[59]DATAQ Instrument Inc., GL820資料擷取卡使用手冊與數據表,
http://www.dataq.com/support/documentation/pdf/datasheets/gl820_ds.pdf
[60]Robert D. Blevins, Formulas for natural frequency and mode shape. Krieger Pub Co, 1995.
[61]K-S Chen and D. L. Trumper, "On the stiffness of elastomer bearings for precision machine design," J. Mechanics, 2013(Submitted)
[62]H. Hocheng, C.M. Chen, Y.C. Chou, and C.H. Lin,”Study of novel electrical routing and integrated packaging on bio-compatible flexible substrates”, Microsystem Technologies, Vol. 16, pp. 423-430, 2009.