| 研究生: |
林郁庭 Lin, Yu-Ting |
|---|---|
| 論文名稱: |
開發由DNA及金奈米粒子所組成的自組裝奈米微結構供表面增顯拉曼之應用 Development of Self-assembled DNA-Nanoparticle Nanostructures for Surface Enhanced Raman Spectroscopy (SERS) |
| 指導教授: |
邱文泰
Chiu, Wen-Tai |
| 共同指導教授: |
陳奕帆
Chen, Yih-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 表面增顯拉曼散射 、奈米微粒 、DNA |
| 外文關鍵詞: | Surface Enhanced Raman scattering (SERS), nanoparticles, DNA |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前有很多關於表面增顯拉曼散射的研究,其中許多研究所開發的表面增顯拉曼散射基板都有不錯的拉曼增強效果,但要同時達到高再現性與均勻性的增強效果並不容易,而這是表面增顯拉曼散射在實際應用時所面臨之挑戰。本研究將奈米微粒與透過DNA自組裝成規則且緊密排列的三維晶體結構,透過此結構增強拉曼訊號以檢測小分子。由於奈米銀相較於奈米金更可以增強拉曼光譜訊號,我們將奈米銀包覆於奈米金粒周圍,並透過改變銀殼的厚度來調整兩相鄰奈米粒子間之距離,尋找出最合適之間距,藉此達到穩定且良好的拉曼增強效果。
At present, lots of people do the research of the surface-enhanced Raman scattering, and they also got the great Raman enhancement effect. But, it is not easy to synthesize high reproducibility and uniformity structures. If we want to apply the surface-enhanced Raman scattering signal into development, we have to overcome this challenge. This study use nanoparticles and DNA to synthesize the self-assembly of 3-dimensional crystal structure, which are able to order regularly and closely. According to those associated studies, silver and gold nanoparticles are able to enhance abundantly signals in Raman spectra. Compare gold to silver, silver has more enhancive effect than the gold. Hence, we use silver to pack around the gold nanoparticles. We can enhance Raman signal successfully through adding different length or sequences of DNA and adjusting the silver thickness around nanoparticles which will affect the gap between two nanoparticles. We want to find the best stability enhancements, and produce the reproducibility and uniformity structures.
1. Raman, C.V. and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121: p. 501-502.
2. Raman, C.V. and K.S. Krishnan, The Optical Analogue of the Compton Effect. Nature, 1928. 121: p. 711.
3. Raman, C.V., A Change of Wave-length in Light Scattering. Nature 1928. 121: p. 619.
4. Ladsberg, G.S. and L.J. Mandelstam, Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften, 1928. 16(28): p. 557.
5. Tobin, M.C., Laser Raman Spectroscopy of Crystal Powders. J. Opt. Soc. Am., 1968. 58(8): p. 1057-1060.
6. Kim, A., et al., Melamine Sensing in Milk Products by Using Surface Enhanced Raman Scattering.Anal. Chem., 2012. 84(21): p. 9303-9309.
7. Jeanmaire, D.L. and R.P.V. Duyne, Surface Raman electrochemistry. Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodised silver electrode. J. Electroanal. Chem., 1977. 84: p. 1-20.
8. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974. 26(2): p. 163-166.
9. McQuillan, A.J., The discovery of surface-enhanced Raman scattering. Notes Rec. R. Soc., 2009. 63(1): p. 105-109.
10. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985. 57: p. 783-823.
11. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998. 27: p. 241-250.
12. Otto, A., The 'chemical' (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc, 2005. 36: p. 497-509.
13. McNay, G., et al., Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS):A Review of Applications. Appl. Spectrosc., 2011. 65(8): p. 825-837.
14. Wu, D.-Y., et al., Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev., 2008. 37(5): p. 1025-1041.
15. Yang, J., et al., Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping.ACS Nano, 2013. 7(6): p. 5350-5359.
16. Li, L., et al., Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction.Analyst, 2013. 138: p. 4574-4578.
17. Lim, D.-K., et al., Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater., 2010. 9: p. 60-67.
18. Lee, J.-H., et al., Tuning and Maximizing the Single-Molecule Surface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells. ACS Nano, 2012. 6: p. 9574-9584.
19. Wei, B., M. Dai, and P. Yin, Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012. 485: p. 623-626.
20. Rothemund, P.W.K., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440: p. 297-302.
21. Castro, C.E., et al., A primer to scaffolded DNA origami. Nat. Methods, 2011. 8: p. 221-229.
22. Wang, Z.-G. and B. Ding, Engineering DNA Self-Assemblies as Templates for Functional Nanostructures.Acc. Chem. Res., 2014. 47: p. 1654-1662.
23. Hill, H.D., et al., Controlling the Lattice Parameters of Gold Nanoparticle FCC Crystals with Duplex DNA Linkers. Nano Lett., 2008. 8: p. 2341-2344
24. Park, S.Y., et al., DNA-programmable nanoparticle crystallization. Nature, 2008. 451: p. 553-556.
25. Macfarlanea, R.J., et al., Assembly and organization processes in DNA-directed colloidal crystallization. PNAS, 2009. 106: p. 10493-10498.
26. Macfarlane, R.J., et al., Establishing the Design Rules for DNA-Mediated Programmable Colloidal Crystallization.Angew. Chem. Int. Ed. , 2010. 49: p. 4589-4592.
27. Nykypanchuk, D., et al., DNA-guided crystallization of colloidal nanoparticles. Nature, 2008. 451: p. 549-552.
28. Maye, M.M., et al., Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol., 2010. 5: p. 116-120
29. Liu, B., et al., Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Anal. Chem., 2012. 84: p. 255-261.
30. LIN, M., et al., Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci., 2008. 73: p. T129-T134.
31. Zhang, Y., et al., Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem., 2012. 135: p. 845-850.
32. Xu, S., et al., Rapid Synthesis of Stable and Functional Conjugates of DNA_Gold Nanoparticles Mediated by Tween 80. Langmuir, 2011. 27: p. 13629-13634.
33. Hurst, S.J., A.K.R. Lytton-Jean, and C.A. Mirkin, Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem., 2006. 78: p. 8313-8318.
34. Lee, J.-H., G.-H. Kim, and J.-M. Nam, Directional Synthesis and Assembly of Bimetallic Nanosnowmen with DNA. J. Am. Chem. Soc., 2012. 134: p. 5456-5459.
35. Zhang, Z., S. Zhang, and M. Lin, DNA-embedded Au–Ag core–shell nanoparticles assembled on silicon slides as a reliable SERS substrate. Analyst, 2014. 139: p. 2207-2213
36. Lee, J.-H., J.-H. Hwang, and J.-M. Nam, DNA-tailored plasmonic nanoparticles for biosensing applications.WIREs Nanomedicine and Nanobiotechnology, 2013. 5: p. 97-110.
37. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382: p. 607-609
38. 蘇泰維, 利用三維DNA-奈米微粒結構於表面增強拉曼光譜. 國立成功大學生物醫學工程學系碩士論文, 2013.
39. Han, X.X., et al., Fluorescein Isothiocyanate Linked Immunoabsorbent Assay Based on Surface-Enhanced Resonance Raman Scattering. Anal. Chem., 2008. 80: p. 3020-3024.
40. White, I.M., S.H. Yazdi, and W.W. Yu, Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluidics, 2012. 13: p. 205-216
41. Zhang, D., et al., Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein.Appl. Spectrosc., 2010. 64: p. 1078-1085.