| 研究生: |
陳家豪 Chen, Jia-Hao |
|---|---|
| 論文名稱: |
麴菌活化過程對清酒釀造前期菌相之影響 The Impacts of Koji Starters on the Bacterial Community of Early Stage in Sake Brewing |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 共同指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 清酒 、麴飯 、發酵微生物 、次世代定序 、氣相層析 |
| 外文關鍵詞: | Sake, Koji rice, Fermentation microorganisms, Next generation sequencing, Gas chromatography |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
清酒 (Sake) 原料為米及水,透過米麴菌 (Aspergillus oryzae) 及酵母菌 (Saccharomyces cerevisiae) 進行釀造,過程可分為酒母 (shubo) 及發酵 (fermentation) 階段。釀造時製備的麴飯是影響品質的一大關鍵,麴飯製備時將冷凍的麴菌直接培養在蒸飯上會使污染機率大增,品質控管難度上升。因此本研究將麴菌培養在可食用的培養基活化後再製作麴飯,以該麴飯釀造清酒,並觀察後續發酵過程的菌相組成及變化與成品品質的影響,和先前研究數據進行比較。本研究針對發酵階段前十八天的採樣進行比較,透過次世代定序 (next generation sequencing, NGS) 分析發酵時期的菌相變動。計算各樣本的 Shannon 指數後,發現本研究的菌相多樣性一進入發酵階段即開始上升,避免過去在第十天才有大幅度變化的延遲現象。接著再透過 non-metric multidimensional scaling (NMDS) 及hierarchical clustering analysis (HCA) 分析的結果得知,本次研究中的菌相會在第七天至第九天間出現明顯的變化導致樣本依相似度分成兩大群,而先前研究則是在第十天至第十五天才有明顯變化而分成兩群,顯示本研究的菌相較先前研究更快達到菌相的穩定。再透過菌相組成分析變化關聯微生物,發現兩次研究的優勢物種皆為乳桿菌目,分別是本研究中第零天樣本中佔比 33% 的乳球菌屬 (Lactococcus) 與先前研究中第零天樣本佔比 43% 的明串珠菌屬 (Leuconostoc)。這兩種乳酸菌的佔比在發酵過程中有最大的改變,但本次研究中的菌相皆緩慢變化,惟先前研究中會在第十天出現劇烈變動。再以熱點圖進行功能預測,發現在相同時間中兩次發酵細菌相在整個發酵過程中表現出的功能大致上相同,但相同的功能會在不同時期表現。將成品進行氣相層析分析,發現兩次釀出的清酒化學成分差異不大,惟本研究的清酒酒精濃度較高,可達 15.7 %。以目前資料推測在本研究中的清酒發酵菌相雖然顯著不同於上次釀造時之組成,但是這些不同的細菌仍然能夠提供同樣的功能,因此兩次研究中的清酒成品化學成分非常相似。此外,改良後的麴菌活化過程使清酒在發酵時菌相變化相對穩定,可能因而讓成品的酒精濃度得以提高。
Sake is brewed through sake yeast Saccharomyces cerevisiae, and the process can be divided into shubo and fermentation stages. During the preparation of koji rice, culture the frozen Aspergillus oryzae on steamed rice will greatly increase the risk of contamination. Therefore, in this study, koji rice was made after activation of Aspergillus oryzae on agar, and investigated the subsequent bacterial composition, microflora changes and quality of product, then compared to the previous research data. In this study, bacteria DNA will be extracted until 18 days, and the microflora will be analyzed through next generation sequencing (NGS). Through shannon index, non-metric multidimensional scaling (NMDS) and hierarchical clustering analysis (HCA), it is found that microflora in both studies will change from the initial phase to stable phase. The bacteria in this study reached the stable phase faster than the previous study. The analysis of bacterial composition showed that the microflora between the two studies are very different, the dominant species is still the lactic acid bacteria. Although the microflora is very different, the heat map revealed that microflora exhibited the same function in the fermentation stage in two studies. The product was analyzed by gas chromatography (GC). It was found that the chemical composition of the sake in the two studies was similar, and the alcohol concentration in this study was higher than previous study. Therefore, it can be thought that the improved koji rice can help the yeast fermentation effectively. From this study, the results showed that the improvement of koji rice caused a substantial change in the microflora of sake, but these different bacteria can still provide the same function, so the chemical composition of the sake in the two studies is similar. At the same time, the improvement of koji rice makes the microflora change relatively stable during the fermentation of sake, so the sake yeast can ferment stably, lead to the increase of the alcohol concentration.
王文嬿. (2020). 果物共發酵對清酒發酵之影響-以鳳梨為例. 國立成功大學生命科學系碩士論文
陳榮坤, 林彥蓉, & 羅正宗. (2012). 水稻新品種臺南16 號之育成. 臺南區農業改良場研究彙報, 60, 1-12.
Akaike, M., H. Miyagawa, Y. Kimura, M. Terasaki, Y. Kusaba, H. Kitagaki, and H. Nishida. 2020. 'Chemical and Bacterial Components in Sake and Sake Production Process', Curr Microbiol, 77: 632-37.
Ashizawa T, Saito Y. 1966. 'Yamahai shubo ni okeru biseibutsugaku-teki kenkyu Part 12', J Brew Soc Japan, 61:638–642.
Avallone, Sylvie, Bernard Guyot, Jean-Marc Brillouet, Eugenia Olguin, and Joseph-Pierre Guiraud. 2001. 'Microbiological and Biochemical Study of Coffee Fermentation', Current Microbiology, 42: 252-56.
Benavent-Gil, Yaiza, Carmen Berbegal, Olga Lucio, Isabel Pardo, and Sergi Ferrer. 2016. 'A new fear in wine: Isolation of Staphylococcus epidermidis histamine producer', Food Control, 62: 142-49.
Bokulich, Nicholas A., Moe Ohta, Morgan Lee, David A. Mills, and J. Björkroth. 2014. 'Indigenous Bacteria and Fungi Drive Traditional Kimoto Sake Fermentations', Applied and Environmental Microbiology, 80: 5522-29.
Charlier, C., M. Cretenet, S. Even, and Y. Le Loir. 2009. 'Interactions between Staphylococcus aureus and lactic acid bacteria: an old story with new perspectives', Int J Food Microbiol, 131: 30-9.
De Muynck, C., C. S. Pereira, M. Naessens, S. Parmentier, W. Soetaert, and E. J. Vandamme. 2007. 'The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications', Crit Rev Biotechnol, 27: 147-71.
Dieffenbach, C. W., T. M. Lowe, and G. S. Dveksler. 1993. 'General concepts for PCR primer design', PCR Methods Appl, 3: S30-7.
Handelsman, J., M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman. 1998. 'Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products', Chem Biol, 5: R245-9.
Ito, Toshihiko, Mahito Konno, Yoichiro Shimura, Seiei Watanabe, Hitoshi Takahashi, and Katsumi Hashizume. 2016. 'Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing', Journal of Agricultural and Food Chemistry, 64: 4599-605.
Jiao, A., X. Xu, and Z. Jin. 2017. 'Research progress on the brewing techniques of new-type rice wine', Food Chem, 215: 508-15.
Koyanagi, T., A. Nakagawa, M. Kiyohara, H. Matsui, A. Tsuji, F. Barla, H. Take, Y. Katsuyama, K. Tokuda, S. Nakamura, H. Minami, T. Enomoto, T. Katayama, and H. Kumagai. 2016. 'Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter', Biosci Biotechnol Biochem, 80: 399-406.
Kurland, C. G. 1977. 'Structure and function of the bacterial ribosome', Annu Rev Biochem, 46: 173-200.
Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade. 1998. 'Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA', Appl Environ Microbiol, 64: 795-9.
Nagayoshi, Emi, Kenji Ozeki, Mai Hata, Toshitaka Minetoki, and Yukio Takii. 2015. 'Transglycosilation activity of Aspergillus oryzae-derived α-glucosidase', Journal of Biological Macromolecules, 15: 13-27.
Nishida, Hiromi. 2021. 'Sake Brewing and Bacteria Inhabiting Sake Breweries', Frontiers in Microbiology, 12.
Okada, K., Y. Gogami, and T. Oikawa. 2013. 'Principal component analysis of the relationship between the D-amino acid concentrations and the taste of the sake', Amino Acids, 44: 489-98.
Okuda, Masaki. 2019. 'Rice used for Japanese sake making', Bioscience, Biotechnology, and Biochemistry, 83: 1428-41.
Starrenburg, M. J., and J. Hugenholtz. 1991. 'Citrate Fermentation by Lactococcus and Leuconostoc spp', Appl Environ Microbiol, 57: 3535-40.
Steinkraus Ph.D, K. H. 2002. 'Fermentations in World Food Processing', Comprehensive Reviews in Food Science and Food Safety, 1: 23-32.
Taniguchi, Moyu, Yoshifumi Takao, Hiroshi Kawasaki, Tasuku Yamada, and Eiichiro Fukusaki. 2020. 'Profiling of taste-related compounds during the fermentation of Japanese sake brewed with or without a traditional seed mash (kimoto)', Journal of Bioscience and Bioengineering, 130: 63-70.
Terasaki, M., S. Miyagawa, M. Yamada, and H. Nishida. 2018. 'Detection of Bacterial DNA During the Process of Sake Production Using Sokujo-Moto', Curr Microbiol, 75: 874-79.
Terasaki, Momoka, Akari Fukuyama, Yurika Takahashi, Masato Yamada, and Hiromi Nishida. 2017. 'Bacterial DNA Detected in Japanese Rice Wines and the Fermentation Starters', Current Microbiology, 74: 1432-37.
Uma Maheshwari, Shunmugavel, Sundarajan Amutha, Rangasamy Anandham, Ganapathyswamy Hemalatha, Natesan Senthil, Soon Woo Kwon, and Natesan Sivakumar. 2019. 'Characterization of potential probiotic bacteria from ‘panchamirtham’; A Southern Indian ethinic fermented fruit mix', LWT, 116: 108540.
Watanabe, D., M. Kumano, Y. Sugimoto, M. Ito, M. Ohashi, K. Sunada, T. Takahashi, T. Yamada, and H. Takagi. 2018. 'Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR(+)] non-genetic element', J Biosci Bioeng, 126: 624-29.
Yoshizawa, Kiyoshi. 1999. 'Sake: Production and flavor', Food Reviews International, 15: 83-107.
Zhang, Kaizheng, Wenchi Wu, and Qin Yan. 2020. 'Research advances on sake rice, koji, and sake yeast: A review', Food Science & Nutrition, 8: 2995-3003.
Zheng, L., D. Li, Z. L. Li, L. N. Kang, Y. Y. Jiang, X. Y. Liu, Y. P. Chi, Y. Q. Li, and J. H. Wang. 2017. 'Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal', Letters in Applied Microbiology, 65: 520-26.
校內:2026-10-13公開