| 研究生: |
何淑靜 Ho, Shu-Ching |
|---|---|
| 論文名稱: |
銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究 Investigation of the tribological behavior of copper/phenolic resin-based semi-metallic friction materials |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 232 |
| 中文關鍵詞: | 半金屬基摩擦材料 、磨潤性質 |
| 外文關鍵詞: | tribological, semi-metallic friction material |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究內容主要是針對以銅/酚醛樹脂製作之半金屬基摩擦材料,使用改變製程參數、添加纖維、施以半碳化熱處理、改變基材比例及改變基材種類等方法,改善此摩擦材料在高溫的磨潤性質,並討論各改良方法對材料在機械性質及磨耗機制方面之影響,期能自行研發具有優異耐熱及磨耗性質的半金屬基摩擦材料。研究結果如下:
在製程參數方面,實驗結果發現最佳的熱壓條件為熱壓溫度180 ℃,而熱壓壓力則為100 kg/cm2,且穩定化時最佳的升溫速率條件為:當溫度小於160 ℃時,升溫速率為 1 ℃/min且溫度160-180 ℃時,升溫速率為 0.5 ℃/min。
在添加纖維方面,由實驗結果可得知添加紅銅纖維或黃銅纖維的試片有著較未添加纖維強化的試片高的抗壓強度值。除了添加纖維束纖維的試片,所有添加纖維強化的試片其平均摩擦係數值均較未添加纖維強化的試片高,添加紅銅纖維的試片其磨耗損失最少。故在此一系列纖維強化由銅/酚醛樹脂組成的半金屬基摩擦材料中,紅銅纖維是最佳的強化材。
在改變熱處理條件方面,實驗結果顯示當半碳化升溫速率較慢時,會使摩擦材料有較高的抗壓強度及硬度並有較少的裂紋產生。當半碳化溫度較400 ℃高時則會使材料的抗壓強度及硬度值同時減少,並且摩擦係數會隨著半碳化溫度的增加而增加。當材料在600 ℃碳化時會有最佳的磨潤性質,並且經半碳化處理後的試片有較好的抗高溫熱/氧化能力。
在改變基材比例方面,實驗結果經半碳化處理基材樹脂含量為50 vol%的試片有最大的抗壓強度、硬度值及密度增加值。在各類條件的試片中,基材樹脂含量為50 vol%的試片有著高且穩定的摩擦係數值(0.3-0.4)和適當的磨耗量,對於實際應用上有最佳的潛力。
在改變基材種類方面,實驗結果顯示經半碳化處理後,以酚醛樹脂為基材的試片有較好的機械性質。由摩擦係數及磨耗損失的比較可發現,以酚醛樹脂為基材的試片在高溫時(300 ℃)仍能保有高的摩擦係數(約0.35),且其磨耗損失只有以瀝青為基材之試片的一半,可得知以酚醛樹脂為基材並經半碳化熱處理製成之半金屬基摩擦材料較以瀝青為基材的材料為佳。
在添加纖維經半碳化熱處理方面,實驗結果顯示所有添加纖維強化的試片經半碳化處理後,其抗壓強度及硬度值都較未添加纖維強化的試片低。金屬纖維的添加有增加材料初始摩擦係數的效果。除了添加纖維束纖維的試片,未添加纖維的試片有著最少的磨耗損失。經半碳化熱處理後相較於添加纖維的試片,未添加纖維的試片有著較佳的機械強度及磨耗性質。
綜合以上所述,由本研究結果發現對銅/酚醛樹脂基摩擦材料進行半碳化熱處理,可使材料在無添加纖維的情況下,達到改善材料耐熱/氧化性質的能力及增加磨耗性質的效果。
The present work is the study of a copper/phenolic resin-based semi-metallic friction material. To improve the tribological behavior of the friction material at higher temperature, we used different processing parameters, different fiber additions, heat treatment (semi-carbonization) conditions, different matrix components and different matrix types. We also discussion the effect of each way on mechanical and tribological behavior of a copper/phenolic resin-based semi-metallic friction material. We hope to development a semi-metallic friction material which has superior heat resistance and best tribological behavior.
The effect of the processing parameters indicate that the best parameters of hot press is at temperature 180 ℃ and under the pressure of 100 kg/cm2. The optimal post-cure rate is 1 ℃/min when temperature is lower than 160 ℃ and 0.5 ℃/min when temperature between 160-180 ℃.
The results of fiber addition show that compared to the fiber-free material, materials containing copper and brass fibers have higher compressive strengths. Except cellulose, all fiber-added materials exhibit higher average COF values than that without fibers. The copper fiber-added material has the smallest wear. Among all fibers the copper fibers appear to be the best candidate due to its relatively high and stable COF as well as low wear.
The results of carbonization show that a lower carbonization rate leads to materials having a higher compressive strength and hardness, as well as fewer cracks. Heat-treating to higher temperature causes both values to decline. Both the friction coefficient and wear are increased with an increasing carbonization temperature. The material carbonized to 600 ℃ exhibits optimal tribological performance. Carbonized samples demonstrate far better high-temperature heat/oxidation resistance than that of non-carbonized samples.
The results of phenolic content show that the materials with 50 vol% resin exhibited the maximum compressive strength, hardness and increase in density after semi-carbonization. Among all materials, R5 demonstrated the greatest potential with a high and stable COF value and reasonably low wear.
The results of different matrix type show that that the pitch-matrix materials exhibit lower compressive strength and hardness values than those of the resin-matrix materials after semi-carbonization. Compared the results of COF and weight loss, the resin-matrix materials can maintain the COF(about 0.35) at a high temperature (about 300 ℃) and the weight loss of the resin- matrix materials only half of the pitch-matrix materials. The resin-matrix materials demonstrate far better high-temperature heat/oxidation resistance than the pitch-matrix materials.
The results of fiber addition and semi- carbonization show that all fiber-added materials exhibit lower compressive strength and hardness values than those without fibers after semi- carbonization. The metal fiber-added materials have the best effect in increasing initial COF. Except cellulose, all fiber-added materials exhibit higher wear values than those without fibers. Compared to fiber-added materials, the fiber-free material appears to be the best candidate due to its relatively high mechanical properties and stable tribological behavior after semi-carbonization.
Experimental results indicate that the semi- carbonization can improve the high-temperature heat/oxidation resistance and tribological behavior of a copper/phenolic resin-based semi-metallic friction material without fiber addition.
Abebe M, Appl FC. Theoretical analysis of the basic mechanics of the abrasive processes. Part 1: General model. Wear 126: 251-266, 1988.
Aderson AE. Wear of brake materials. In Peterson MB, Winer WO, editors. Wear control Handbook, Chap. 5, New York: ASM: 843-857, 1980.
Albertson CC. Asbestos-free friction material. US Patent 4403047, 1983.
Anderson AE. Friction and wear of Automotive Brakes. In Henry SD, editor. ASM Handbook, Vol. 18, Metals Park, OH 44073: ASM International: 569-577, 1992.
Arai M. Friction material. US Patent 6260674, 2001.
Archard GD. Magnetic electron lens aberrations due to mechanical defects. J Sci Instrum 30: 352-358, 1953.
Asano H, Iwata K. Friction material composite. US patent 4895882, 1990.
ASTM D695-96. Standard Test Method for Compressive Properties of Rigid Plastics, 1996.
ASTM G77-83. Standard Practice for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test. Annual Book of ASTM Standards, Section 3, Volume 03.02-Erosion and Wear; Metal Corrosion. Philadelphia: PA: 450-466, 1985.
ASTM G83-83. Standard Test Method for Wear Testing with a Crossed-Cylinder Apparatus. Annual Book of ASTM Standards, Section 3, Volume 03.02-Erosion and Wear; Metal Corrosion. Philadelphia: PA: 499-506, 1985.
ASTM G99-90. Standard Test Method for Wear Testing with a Pin-on –Disk Apparatus. Annual Book of ASTM Standards, Section 3, Volume 03.02-Erosion and Wear; Metal corrosion. Philadelphia: PA: 387-391, 1990.
Awasthi S, Wood JL. C-C composite materials for aircraft brakes. Advanced Ceramic Materials 3: 449-451, 1988.
Bahadur S, Gong D, Anderegg J. Investigation of the influence of CaO, CaS and CaF2 fillers on the transfer and wear of nylon by microscopy and XPS analysis. Wear 197: 271-279, 1996.
Bahadur S, Gong D. The role of copper compounds as fillers in transfer film formation and wear of nylon. Wear 154: 207-223, 1992.
Bahadur S, Gong D. The role of copper compounds as fillers in transfer and wear behavior of polyetheretherketone. Wear 154: 151-165, 1992.
Bahadur S, Polineni VK. Tribological study of glass fabric-reinforced polyamide composites filled with CuO and PTFE. Wear 200: 95-104, 1996.
Bahadur S, Zhang L, Anderegg J. The effect of zinc and copper oxides and other zinc compounds as fillers on the tribological behavior of thermosetting polyester. Wear 203-204: 464-473, 1997.
Bahadur S, Zhang L, Anderegg J. Tribochemical studies by XPS analysis of transfer films of nylon 11 and its composites containing copper compound. Wear 165: 205-212, 1993.
Bahadur S. The development of transfer layers and their role in polymer tribology. Wear 245: 92-99, 2000.
Bartram DT. Asbestos free friction materials. US Patent 4197223, 1980.
Bergman F, Eriksson M, Jacobson S. Influence of disc topography on generation of brake squeal. Wear 225-229: 621-628, 1999.
Boggs RN. Composite friction material thrives on heat. Design News 91-92, 1991.
Bowden FP, Tabor D. The friction and lubrication of solid. Oxford: Clarendon Press: 87, 1950.
Budinski KG. Surface Engineering for Wear Resistance. New Jersey: Prentice Hall: 16, 1988.
Carter AJ. SAE Annual Meeting Paper No.50-438, 1950.
Cenna AA, Doyle J, Page NW, Beehag A, Dastoor P. Wear mechanisms in polymer matrix composites abraded by bulk solids. Wear 240: 207–214, 2000.
Chang WC, Ma CCM, Tai NH, Chen CB. Effects of processing methods and parameters on the mechanical properties and microstructure. J Mater Sci 29:5859-5867, 1994.
Chen JD, Chern Lin JH, CP Ju. Effect of humidity on the tribological behavior of carbon-carbon composites. Wear 157: 141-149, 1996.
Chester J. Friction materials. US Patent 4273699, 1980.
CNS 2472, G3038. Gray iron castings.
CNS 2586, D2002. Brake linings for automobiles.
CNS 8813, D3122. Method of test for brake shoe assembly of motor cycles.
CNS 8814, D2129. Brake shoe assembly for motorcycles.
Delvaux P, Desrosiers L, Roy A. Organic friction material composition for use to produce friction linings. US Patent 5250588, 1993.
Fitzer E. The future of carbon-carbon composites. Carbon 25(2): 163-190, 1987.
Fox JR. Wet wheel brakes require. Society of Automotive Engineers 89(4): 30-34, 1981.
Garbar II. Gradation of oxidational wear of metals. Tribol Int 35:749-755, 2002.
Gopal P, Dharani LR, Blum FD. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material. Wear 174: 119-127, 1994.
Griffith AM. Composition railroad friction material with synthetic fiber content. US Patent 4217255, 1980.
Gupta A, Harrision IR. Small-angle X-ray scattering (SAXS) in carbonized phenolic resins. Carbon 1994; 32(5): 953-960.
Hamada E, Shibata Y, Ochiai Y. Surface-treated friction material and its production. Japanese Laid-Open Patent Publication 57-071741, 1983.
Hara Y, Oyama T, Inoue M, Mibe T, Nakanishi H. Non-asbestos disc brake pad for automobiles. US Patent 6220404, 2001.
Hawthorne HM. On the role of interfacial debris morphology in a conforming contact tribosystem. Wear 149: 169-185, 1991.
Hayashi N, Matsui A, Takahashi S. Effect of surface topography on transferred film formation in plastic and metal sliding system. Wear 225-229: 329-338, 1999.
Hays Jr. WD. Friction material. US Patent 4748193, 1988.
Horiguchi K. Non-asbestos friction material. US Patent 5106887, 1992.
Hutchings IM. Mechanisms of wear in powder technology: a review. Powder Technol 76:3-13, 1993.
Inoue M. Application of polymers to brakes and clutches. Jpn J Tribol 37(6): 493-496, 1992.
Irifune M, Ishitani T, Shibuya T, Maeda M, Chiba N, Murakami Y. Wet type paper friction material with combined improved friction characteristics and compression fatigue strength. US Patent 6121168, 2000.
Iwata K, Asano H. Friction material. US Patent 4735975, 1988.
Jacko MG, Ducharme RT, Somers JH. Brake and clutch emissions generated during vehicle operation. SAE Trans 35: 1813-1831, 1973.
Jacko MG, Rhee SK. Brake linings and clutch facings. In Grayson M, editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983.
Jacko MG. Physical and chemical changes of organic disk pads in service. Wear 46: 163-175, 1978.
Jahanmir S, Suj NP. Mechanics of subsurface void nucleation in delamination wear. Wear 44: 17-38, 1977.
Jia X, Zhou B, Chen Y, Jiang M, ling X. Study on worn surface layers of the friction materials and grey cast iron. Tribol 15(2): 171-176, 1995.
JIS H8503. Methods of Wear Resistance Test for Metallic Coatings, 1983.
Kakegawa H, Yasuda T, Wang X. Binder composite for friction materials, and friction material. US Patent 5889081, 1999.
Kamioka N. Friction material of brake. Japanese Laid-Open Patent Publication 63-219924, 1988.
Kamioka N. Friction material of brake. Japanese Laid-Open Patent Publication 63219924A , 1987.
Kamioka N. Production of friction material. Japanese Laid-Open Patent Publication 63-310770, 1988.
Kani H. Molded resin composition of friction material for use in clutches. US Patent 4777193, 1988.
Kato K. Wear in relation to friction — a review. Wear 241: 151-157, 2000.
Kesavan S, Staklis AA, Russik JB, Tsang PHS. Friction material for drum-in-hat disc brake assembly. US Patent 6220405 B1, 2001.
Kim SJ, Cho MH, Lim D-S, Jang H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 251: 1484–1491, 2001.
Kinouchi S, Hara Y, Yamaguchi J. Friction material composition, production of the same and friction material. US Patent 6372817, 2002.
Kitahara S, Muramatsu F, Umezawa S, Takarada M, Takahashi T. Wet friction material. US Patent 5563196, 1996.
Kitahara S, Muramatsu F, Umezawa S. Wet frictional material and process for producting the same. US Patent 6331358 B1, 2001.
Ko TH, Chen PC. Study of the pyrolysis of phenolic resin reinforced with two-dimensional plain woven carbon fabric-Ι. J Mater Sci Lett 10: 301-303, 1991.
Kobayashi M. Non-asbestos friction material. US Patent 6413622, 2002.
Kojima T, Sakamoto H, Kamioka N, Tokumura H. Process for the production of friction materials. US Patent 5279777, 1994.
Komori T, Miyake S, Senoo Y. Brake-friction materials. US Patent 4954536, 1990.
Komori T, Miyake S, Senoo Y. Friction brake material. Japanese Laid-Open Patent Publication 01269732, 1988.
Kong H, Yoon ES, Kwon OK. Self-formation of protective oxide films at dry sliding mild steel surface under a medium vacuum. Wear 181-183: 325-533, 1995.
Kudo T, Nakajima O. Friction material. US Patent 5576369, 1996.
Kuhlmann-Wilsdorf D. What role for contact spots and dislocations in friction and wear? Wear 200: 8-29, 1996.
Kulis Jr SF, Carpenter RL. Brake friction pad assembly. US Patent 5413194, 1995.
Laible RC, Fibrous armour. In Ballistic Materials and Penetration Mechanics, Elsevier Scientific Publishers, Amsterdam, The Netherlands, pp. 77-115, 1980.
Lam R, Chen YF. Friction lining materials. US Patent 5676577, 1997.
Lancaster JK. Abrasive wear of polymers. Wear 14: 223-229, 1969.
Lancaster JK. The effect of carbon fiber reinforcement on the friction and wear of polymers. Br J Appl Phys 1: 549, 1968.
LÁszlÓ K, Josepovits K, Tombácz E. Analysis of active sites on synthetic carbon surfaces by various methods. Analytical Sci 17: i1741-i1744, 2001.
LAUŠEVIĆ Z, MARINKOVIĆ S. Mechanical-properties and chemistry of carbonization of phenol-formaldehyde resin. Carbon 24(5): 575-580, 1986.
Le Lannou M. Friction lining. US Patent 4418115, 1983.
Lewis RB. Predicting the wear of sliding plastic surfaces. Mech Eng 86(10): 32, 1964.
Li TQ, Zhangb MQ, Le S, Han MZ. Friction induced mechanochemical and mechanophysical changes in high performance semicrystalline polymer. Polymer 40: 4451-4458, 1999.
Lui TS, Chen LH, Chan KS. U.S./ Taiwan Joint Symp On Trib (Taipei): Proceeding 179-183, Nov 1989.
Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dentistry 24(1-2): 141-148, 1996.
Matsushima N, Noguchi K, Hirano K. Friction material containing steel wool as reinforcing agent. US Patent 4369263, 1983.
McCord HL. Resin-based friction material. US Patent 5830309, 1998.
McCord HL. Sintered composite friction material comprising fluorocarbon resin. US Patent 5230952, 1993.
McGinnis SB. Friction materials. US Patent 4125496, 1978.
Miyake S. Brake frictional material. Japanese Laid-Open Patent Publication 63-123368, 1988.
Miyoshi T, Kitahara S, Umezawa S. Wet friction material containing activated carbon fiber. US Patent 5395864, 1995.
Moore DF. Principles and Application of Tribology. Pergamon: Oxford: 1-388, 1975.
Moraw K, Paul HG. Asbestos-free friction material. US Patent 4373038, 1983.
Morita K, Matsukawa T, Harada M. Dry friction material. US Patent 5308392, 1993.
Muratoglu OK, O`Connor DO, Bragdon CR, Jasty M, Harris WH. J Biomechanics (supplement 1), 31: 114, 1998.
Nakagawa M, Fumiaki N. Friction material using steel fibers. US Patent 4672082, 1987.
Nakagawa M, Nitto F. Friction material using iron powder. US Patent 4665108, 1987.
Nakagawa M, Yamashita Y, Ibuki M, Kishimoto H. Friction material and method of manufacturing such material. US Patent 5268398, 1993.
Nakajima O. Friction material. US Patent 5817411, 1998.
Nakanishi M, Kawabata M, Suzuki A, Shirasawa A. Friction material and method of producing the same. US Patent 6423668, 2002.
Nakazawa S, Fujiwara M. Wet friction material. US Patent 5127949, 1992.
Nam JD, Seferis JC. Initial polymer degradation as a process in the manufacture of carbon-carbon composites. Carbon 30(5):751-761, 1992.
Newman LB. Friction materials. New Jersey. USA: Noyes data corporation: 1, 1978.
Nitto F, Sano T, Sakagami S, Ibuki M, Kishimoto H. Non-asbestos friction material. US Patent 5866636, 1999.
Oberlin A. Carbonization and graphitization. Carbon 22(6): 521-541, 1984.
Ogawa H, Shimazaki K, Niijima K. Friction material. US Patent 4861809, 1989.
Ogawa H, Takenaka M. Friction material. US Patent 6432187, 2002.
Ogiware O. Friction material. US Patent 4348490, 1982.
Ohya K, Sayama N. Friction material for brake. US Patent 5344854, 1994.
Okubo HS, Albertson CE, Nibert RK. Asbestos-free friction materials. US Patent 4446203, 1984.
Österle W, Griepentrog M, Gross Th, Urban I. Chemical and microstructural changes induced by friction and wear of brakes. Wear 251: 1469-1476, 2001.
Oya K, Sayama N. Frictional material for brake. Japanese Laid-Open Patent Publication 04-022827, 1992.
Pflug DU, Koch W, Eckert A. Friction material. US Patent 5049191, 1991.
Rabinowicz E. Friction and wear of materials. Willey: New York: 137, 1965.
Rhee SK, Kwolek JP. Sponge iron friction material. US Patent 3835118, 1974.
Rhee SK. Friction coefficient of automotive friction materials- Its sensitivity to load, speed, and temperature. SAE Paper No. 740415, 1974.
Rhee SK. Wear equation for polymers sliding against metal surfaces. Wear 16: 431-445, 1970.
Rhee SK. Wear mechanisms at low-temperatures for metal-reinforced phenolic resins. Wear 23: 261-263, 1973.
Rhee SK. Wear of metal-reinforced phenolic resins. Wear 18: 471-477, 1971.
Richardson RCD. The abrasive wear of metals and alloys. Proc Instn Mech Engrs 182(3A): 410-414, 1967.
Riesz CH. Friction, lubrication and wear mechanisms. In Schey JA editor. Metal deformation processes, Chap. 3, New York: Marcel dekker Inc 84-136, 1970.
Roy AK. Effect of carbonization rates on the interlaminar tensile stiffness and strength of two-dimensional carbon-carbon composites. Thermomechanical behavior of advanced structural materials ASME 1993; 34-173: 171-179.
Santoso M, DiPino MA. Fluoroelastomer composite friction material. US Patent 4400434, 1983.
Sasahara S, Watanabe T. Non-asbestos friction material. US Patent 6284815, 2001.
Sasaki Y, Yanagi M, Todani Y, Mita T. Friction material composition. US Patent 6080230, 2000.
Sasaki Y, Yanagi M. Friction material. US Patent 6190761, 2001.
Savage G. Carbon yield from polymers. In Chapman, Hall, editors. Carbon-carbon composites, Chap. 4, London: 120-121, 1993.
Scieszka SF. A study of tribological phenomena in friction couple:brake composite material-steel. ASLE Transactions 25(3): 337-345, 1982.
Searfoss WH, Jones GP. Friction materials. US Patent 4218361, 1980.
Seki K, Hung TV. Non-asbestos friction material. US Patent 5360842, 1994.
Seki K. Non-asbestos friction material. US Patent 5217528, 1993.
Shepley CC, Carter DR. Friction material. US Patent 5501728, 1996.
Sherwood PMA. Data analysis in X-ray photoelectron spectroscopy. In Briggs D, Seah MP, editors. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Appendix 3, New York: John Wiley & Sons, 1990.
Shibata K, Azuma Y, Suzuki T. Friction material. US Patent 5004497, 1991.
Song BH. Non-asbestos, friction material composition and method of making same. US Patent 5428081, 1995.
Sudarshan TS, Bhat DG. Surface Modification Technologies. The Metallurgical Society 169, 1988.
Sukizoe TT, Ohmae N. Wear mechanism of un-directionally oriented fiber-reinforced plastics. J Lubr Technol 10: 401-407, 1977.
Sumira A. Friction material. US Patent 4226758, 1980.
Suzuki M, Mori M, Yagi H. Wet friction material. US Patent 6265066, 2001.
Suzuki M, Sakai M. Wet friction engagement plate. US Patent 5823314, 1998.
Sviridyonok AI, Bely VA, Smurugov VA, Savkin VG. A study of transfer in friction interaction of polymers. Wear 25: 301-308, 1973.
Tabe Y, Takamoto H, Shimada K, Sugita Y. Friction material. US Patent 4324706, 1982.
Takashi K, Osamu N. Friction material. US Patent 5576369, 1996.
Takenaka M, Ogawa H, Shibutani H. Friction material. US Patent 6355601, 2000.
Tanaka K. Friction and wear of glass and carbon fiber-filled thermoplastic polymers. J Lubr Technol (99): 408-414, 1977.
Tanaka T, Tamura H, Sawano K, Hiramatsu N. Wet multiplate system clutch plate coated with phenolic resin mixture. US Patent 5516587, 1996.
Theberge J, Arkles B. Wear characteristics of carbon fiber reinforced thermoplastics. Lub Eng 30: 585, 1974.
Thomas CR. Essentials of Carbon-Carbon Composites. Cambridge: The Royal Society of Chemistry: 20, 1993.
Thompson MS, Beals JT, McCluskey PH, McKee DW, Lang MC, Lussier FJ et al.. Molybdenum alloy elevator safety brakes. US Patent 6371261, 2002.
Tokumura H. Composite friction material for brakes. US Patent 5080969, 1992.
Trainor JT, Covaleski SF, Adelmann JC. Friction material for clutch facings and the like. US Patent 4384640, 1983.
Trick KA, Saliba TE. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33(11): 1509-1515, 1995.
Tsang PHS, Coyle JP, Rhee SK. Molded brake pad. US Patent 4617165, 1986.
Van De Velde F, De Baets P. The friction and wear behaviour of polyamide 6 sliding against steel at low velocity under very high contact pressures. Wear 209: 106-114, 1997.
Vaziri M, Spurr RT, Stott FH. Aninvestigation into the wear of polymeric materials. Wear 122: 329-342, 1988.
Vishwanath B, A.P. Verma and C.V.S.K. Rao, Wear study of glass woven roving composite, Wear 131: 197-205, 1989.
Vishwanath B, Verma AP, Kameswara Rao CVS. Effect of matrix content on strength and wear of woven roving glass polymeric composites. Composites Sci and Tech 44: 77-86, 1992.
Vishwanath B, Verma AP, Kameswara Rao CVS. Effect of reinforcement on friction and wear of fabric reinforced polymeric composites. Wear 167: 93-99, 1993.
White JL. Petroleum-derived Carbons, 21. Washington DC: Am Chem Soc Symp Series; 282, 1976.
Wright MA, Butson G. On-highway brake characterization and performance evaluation. Materially Speaking 11(1): 1-7, 1997.
Yamada Y. Investigation of transfer phenomenon by X-ray photoelectron spectroscopy and tribological properties of polymers sliding against polymers. Wear 210: 59-66, 1997.
Yamashita Y, Ouchi K. A study on carbonization of phenol-formaldehyde resin labeled with deuterium and 13C. Carbon 19(2): 89-94, 1981.
Yan Y, Shi X, Liu J, Zhao T, Yu Y. Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding. J Appl Polym Sci (83): 1651-1657, 2002.
Yu L, Bahadur S. An investigation of the transfer film characteristics and the tribological behavior of polyetheretherketone sulfide compounds in sliding against tool steel. Wear 214: 245-251, 1998.
Yuji H, Takahisa K. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol Transactions 39(2): 346-353, 1996.
Zhao Q, Bahadur S. A study of the modification of the friction and wear behavior of polyphenylene sulfide by particulate Ag2S and PbTe fillers. Wear 217: 62-72, 1998.
Zum Gahr KH. Classification of wear processes. In Microstructure and wear of materials, Amsterdam: Elsevier: 80-131, 1987.