| 研究生: |
莊宴惠 Juang, Yan-Huei |
|---|---|
| 論文名稱: |
奈米碳管表面改質與複合材料合成之電性和導熱性量測 Surface Modification of CNT and Synthesis of Polymer Composites for Measurement of Electrical Properties |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 奈米碳管 、官能基化奈米碳管 、導電係數 、聚對苯二甲酸乙烯酯 、熱傳導係數 、奈米複合材料 |
| 外文關鍵詞: | nanocomposite, thermal conductivity, electrical resistivity, CNTs, functionalized CNTs, PET |
| 相關次數: | 點閱:81 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
填充型導電高分子其高分子本身並不導電,藉由加入導電的添加物填充於高分子中,以使其具導電性。本實驗利用硫酸與硝酸(3:1)的混合酸化學改質破壞奈米碳管表面及其長度並製備不同官能基的碳管粉末-羧酸基(-COOH)的碳管、以醯化(-COCl)處理碳管、十二烷基磺酸鈉(SDS)包覆的碳管;以高分子材料聚對苯二甲酸乙烯酯(PET)為母體摻雜於改質過後的多壁奈米碳管,利用球磨混合及熱壓成型的方法製備多壁奈米碳管-聚對苯二甲酸乙烯酯之奈米複合材料,並量測其導電性與導熱性。
研究後觀察高溫酸處理過後的多壁奈米碳管於有機溶劑中(ex.甲醇)分散性較佳,但摻雜塑化成膜後發現因長度過度切短而造成電阻值偏高,並比較純的PET(熱傳導係數值為0.194 W/m*K)與摻雜不同官能基粉
末的複合材料混合成膜時所測得的導熱係數,加入改質CNT的複合材料其導熱係數皆有提高的現象,經由酸處理50oC的CNT在2wt%的重量百分比可提高導熱性到51%,故其導熱現象在摻雜碳管後有較佳的情況。
Polymer materials which do not conduct electric current can become conductive by adding small amount of conductive nanomaterials. The current experiments demonstrate that by blending small amount of functionalized multiwall carbon nanotubes (MWNTs) with PET to form nanocomposite the PET-MWNTs can become conductive effectively both electrically and thermally. Three different methods of functionalization for the MWNTs are adopted. The first one uses solution of sulfuric acid mixed with nitric acid at a ratio of 3:1 to heat up and boil the MWNTs such that the surface of MWNTs is attached with carbonyl group. The second method uses the solution of SOCl2(20ml)+DMF(1ml) to heat and soak the MWNTs that was already acidic treated by the previous method such that the surface of MWNTs is attached with acryl chloride group. The third method is to soak the as grown MWNTs in SDS solution. The dispersion property of the functionalized MWNTs was tested in methanol by the light absorption of the mixed solvent at UV-vis spectrum. The acidic treated MWNTs by the first method have a much better dispersion. The functionalized MWNTs are then blending with the polyester powder in a planetary mill. The mixed powder was then hot
pressed to form a solid film in order for both the electric and thermal conductivity measurements. The results indicate that the resistivity of the PET blending with the as grown MWNTs has the lowest value while the resistivity of the PET blending with the acidic treated MWNTs with the first method has the highest value. However, the thermal conductivity of the PET blending with acidic treated MWNTs can increase up to 51% at 2wt% MWNT of the content and the result indicate that the thermal conductivity measurements of the PET blending with the as grown MWNTs are better. More discussion on these issues will be presented in the paper.
1. C. A. Dyke, J. M. Tour, “Covalent functionalization of single-walled carbon nanotubes for materials applications”, Journal of Physical Chemistry A 108, 11151 (2004).
2. S. C. Tsang, Y. K Chen, P. J .F Harris, M .L .H Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature 372, 159 (1994).
3. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56 (1991).
4. S. Iijima, T. Ichihashi,. Y. Ando, “Pentagons, heptagons and negative curvature in graphite microtubule growth”, Nature 356, 776 (1992).
5. B. I. Yakobson, “Mechanical relaxation and 'intramolecular plasticity' in carbon nanotubes ”, Applied Physics Letters 8, 918 (1998).
6. L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 6941 (1993).
7. R. S. Ruoff, D. C. Lorent, Physical Review 33, 925 (1995).
8. S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters 84, 4613 (2000).
9. M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnolory 12, 21 (2001).
10. L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes” Synthetic Metals 103, 2492 (1999).
11. S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 , (1993).
12. H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon, “Chromatographic purification and properties of soluble single-walled carbon nanotubes”, Journal of the American Chemical Society 123, 11673 (2001).
13. A. R. Harutyunyan, B. K Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles” Journal of Physical Chemistry B 106, 8671 (2002).
14. K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes”, Solid State Ionics, 141, 203 (2001).
15. Y. H. Li, S. Wang, Z. Luan, J. Ding, and C. Xu, “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 1057 (2003).
16. Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, Chem. Phys. Lett., 357,263 (2002).
17. F. Lkazaki, S. Ohshima, K. Uchida, Y. Kuriki, H. Hayakawa, M. Yumura, K. Takahashi and K. Tojima, Carbon 32, 1539 (1994).
18. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commum., “Controlled adsorption of carbon nanotubes on chemically modified electrode arrays”, 10, 584 (1998).
19. 石立節,”奈米碳管純化前後表面特性之變化”,國立中央大學環境工程研究所碩士論文 (2005).
20. F. H. Ko, C. Y. Lee, C. J. Ko, and T. C. Chu, “Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel” Carbon 43,727 (2005).
21. A. R. Harutyuanyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles” Journal of Physical Chemistry B 106, 8671 (2002).
22. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. “Huffman, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters 282, 429 (1998).
23. W. B. Choi, D. S. Chung, J. H. Kang. H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Applied Physics Letters 75, 3129 (1999)
24. H. J. Vandenburg, A. A. Clifford, K. D. Bartle, R. E. Carlson, J. Carrollc and I. D. Newtonc, “A simple solvent selection method for accelerated solvent extraction of additives from polymers”, The Royal Society of Chemistry (1999).
25. 林江珍,林嵩祚,“奈米碳管之有機分散性改質及應用”, 中華民國九十四年石油季刊, 4, 47.
26. A. Hirsch, “Functionalization of Single-Walled Carbon Nanotubes”, Angewandte Chemie International Edition 11, 44 (2002).
27. F. Awaja, D. Pavel, “Recycling of PET”, European Polymer Journal 41, 1453 (2005).
28. 成會明,“奈米碳管-奈米研究與應用系列”.
29. 林彥文,“聚苯胺奈米碳管導電複合材料之製備與電性研究” (2003).
30. S. Tzavalas, V. Drakonakis, D. E. Mouzakis, D Fischer, and V. G. Gregoriou, “Effect of carboxy-functionalized multiwall nanotubes (MWNT - COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET - MWNT nanocomposites” , Macromolecules 39, 9150(2006).
31. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J.Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, Science 280, 1253 (1998).
32. B. Pan, D. Cui, F. Gao, R. He, “Growth of muti-amine terminated poly(amidoamine) dendrimers on the surface of carbon nanotubes”, Nanotechology 17, 2483 (2006).
33. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Solution Properties of Single-Walled Carbon Nanotube”, Science 282, 95 (1998).
34. T. M. Wu, Y. W. Lin, “Doped polynailine/muti-walled carbon nanotube composites: preparation, characterization and properties”, Polymer 47, 3576 (2006).
35. P.G. Jang, K. S. Suh, M. Park, J. K. Kim, W. N. Kim, H. G. Yoon, “Electrical Behavior of Polyurenthane Composites with Acid Treament-Induced Damage to Multiwalled Carbon Nanotubes ”, Journal of Applied Polymer Science 106, 110 (2007)
36. L. Jiang, L. Gao, and J.Sun, “Production of aqueous colloidal dispersion of cabon nanotubes”, Jounal of Colloid and Interface Science 206, 89 (2003).
37. .J. Shen, W. Huange, L. Wu, Y. Hu, M. Ye, “Study on amino-functionalization mutiwalled carbon nanotubes”, Materials Scienece and Engineering 464, 151 (2007).
38. D. Zhang, L. Shi, J. Fang, X. Li, K. Dai, “Low temperature synthesis of boron phosphide nanocrystals”, Materials Letters 59, 865 (2005).