| 研究生: |
郭大維 Kuo, Ta-Wei |
|---|---|
| 論文名稱: |
多孔矽基板上成長單晶氮化碳化矽薄膜及其應用在高性能高溫紫外光感測器之研究 Characterization and Preparation of Single-Crystalline SiCN Thin Film on Porous-Si Substrates and its Application in High-Temperature UV Light Detector |
| 指導教授: |
方炎坤
Fang, Yen-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 多孔矽 、氮化碳化矽 、紫外光感測器 |
| 外文關鍵詞: | porous si, SiCN, UV light detector |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究在多孔矽基板上成長單晶氮化碳化矽薄膜,利用多孔矽層高阻抗的特性來發展高性能、高電壓、高溫之氮化碳化矽元件。在本論文中,吾人先將矽基板表面以電化學陽極蝕刻法(Electrochemical Anodization Method)形成多孔矽層(porous Si),再以快速升溫化學氣相沈積法(Rapid-Thermal-CVD)在多孔矽層上沈積單晶氮化碳化矽(β-SiCN)薄膜,並發展具“氮化碳化矽/多孔矽”結構的高電壓及高溫操作能力的異質接面UV光感測器。由實驗結果知,氮化碳化矽/多孔矽異質接面UV光二極體在室溫下光/暗電流比(Ip-Id)/Id為95倍,而在高溫200℃下仍保有2~3倍。此外,反相崩潰電壓在室溫下為48V,而在高溫190℃下其反相崩潰電壓仍可保持在15V,相較於成長於單晶矽基板上之相同元件特性改善約達200﹪之多,證實所研製的元件頗適合於高溫環境中運用。
Silicon carbon nitride (SiCN) has been a promising material for many studies owing to its better physical characteristics for wide applications. In this thesis, we develop a technique for growing single-crystalline SiCN films on PS(porous-Si)/Si substrates. The high resistivity and less stress unique characteristics make the PS layer an attractive material for high temperature and low leakage current device. In this work, the PS layers are firstly formed on the Si substrates by an electrochemical anodization method. Next, SiCN films are deposited by a RTCVD system. With the SiCN films, new SiCN ultra-violet (UV) light detectors devices for application in high voltage and high temperature are developed. The performance of the SiCN/PS hetrojunction UV light detector is examined by the photo/dark current ratio and reverse breakdown voltage. The current ratio is about 95 at room temperature and 2~3 at 190℃. The reverse breakdown voltage is about -48V at room temperature and -15V at 190℃. Based on the experimental results, the developed SiCN films on porous-Si are more suitable for preparation of high temperature UV light detectors.
※參考文獻
[1] Zheng Gong, E. G. Wang, G. C. Xu, Yan Chen, “Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films”, Thin solid films, vol.348, p.114-121, 1999
[2] L. C. Chen, C. Y. Yang, D. M. Bhusari, K. H. Chen, M. C. Lin, J. C. Lin, T. J. Chuang, Diamond and Relat. Mater., vol.5, p.514, 1996
[3] L. C. Chen, D. M. Bhusari, C. Y. Yang, K. H. Chen, T. J. Chuang, M. C. Lin, C. K. Chen, Y. F. Huang, Thin Solid film, vol.303 12, p.66, 1997
[4] D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen, M. C. Lin, J. Mater. Res., 12, p.322, 1997
[5] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chem, Y. F. Chen, Y. C. Jong, Y. S Huang, Appl. Phys. Lett., vol.72, p.2462, 1998
[6] J. J. Wu, K. H. Chen, C. Y. Wen, L. C. Chen, X. J. Guo, H. J. Lo, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Lin, “Effect of carbon source on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor”, Diamond and Relat. Mater., vol.9, p.556-561, 2000
[7] K. H. J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, Y. S. Huang, ”Wide bandgap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition”, Thin Solid Films, vol. 355-356, p.205-209, 1999
[8] J. J. Wu, C. T. Wu, Y. C. Liao, T. R. Lu, L. C. Chen, K. H. Chen, L. G. Hwa, C. T. Kuo, K. J. Ling, “Deposition of silicon carbon nitride films by ion sputtering”, Thin Solid Films, vol.355-356, p.417-422, 1999
[9] X. C. Xiao, Y. W. Li, L. X. Song, X. F. Peng, X. F. Hu, “ Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar”, Applied surface science, vol.156, p.155-160, 2000
[10] R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., vol.71, no.8, p.R1, 1992.
[11] P Steiner, F. Kozlowski, and W. Lang, “Blue and Green Electroluminescence from a Porous Silicon Device,” IEEE EDL, vol.14, no.7, pp.317-319, 1993.
[12] J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kowk, “Highly sensitive photodetector using porous silicon,” Appl. Phys. Lett., vol.61, no.4, pp.459-461, 1992.
[13] Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, “Formation and Properties of Porous Silicon and Its Application,” J. Electrochem. Soc., vol.122, no.10, pp.1351-1355, 1975.
[14] M. Yamana, N. Kashiwazaki, A. Kinoshita, T Nakano, M. Yamamoto, andC. W. Walton, “Porous Silicon Oxide Layer Formation by the Electrochemical Treatment of a Proous Silicon Layer,” J. Electrochem. Soc., vol.137, pp.2925-1927, 1990.
[15] S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett., vol.49 (3), no.21, pp. 140-142, 1986.
[16] Z. Liu, B. Q. Zong, and Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Film, vol.254, pp.3-6, 1995.
[17] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol.51 (11), no.14, pp. 814-816, 1987.
[18] Y. C. Kao, K. L. Wang, B. J. Wu, T. L. Lin, C. W. Nieh, D. Jamieson, and . Bai, “Molecular beam epitaxial growth of CoSi2 on porous Si,” Appl. Phys. Lett., vol.51 (22), no.30, pp. 1809-1811, 1987.
[19] George C. John* and Vijay A.Singh, “Diffusion-induced nulcleation model for the formation of porous silicon” Physical Review B.,vol. 52, 125, (1995).
[20] K. Imai and S. Nakajima, Proceedings of International Electron Devices Meeting, Washington (IEEE, New York, 1981) p.376.
[21] L. T. Canham. “Silicon Quantum Wire Array Fabrication by Electrochemical Dissolution of Wafers,” Applied Physics Letters., vol 57. iss. 10. pp. 1046~1048 (1990).
[22] V.Lehmanm, U. Gosele, “Porous Silicon Formation-A Quantum Wire Effect”, Applied Physic Letter. , 58, 856(1991).
[23] M. J. Beale, J. D. Benjamin, M. J. Uren, N. G.. Chew, and A. G. Cullis, Appl. Phys. Lett., 73, 622(1985).
[24] M. J. Beale, J. D. Benjamin, M. J. Uren, N. G.. Chew, and A. G. Cullis, J. Cryst., 73,622(1985).
[25] I. M. Young, M. J. Beale, J. D. Benjamin, Appl. Phys. Lett., 46, 1133(1985).
[26] Fereydoon Namavar, H. Paul Naruska, “Visible electroluminescence from porous silicon np hetrojunction diodes”, APL, 60, 2514(1992)
[27] Zhiliang Chen and Gijs Bosman, “Visible light from heavily doped porous silicon pn homojunction diodes”, APL, 62, 708(1993)
[28] G. Smestad and H. Rise, Solar Energy Materials and Solar Cells 25, 51(1992)
[29] G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, Solar Energy Materials and Solar Cells 26, 345(1992)
[30] R. L. Smith, S. F Chuang, et al., “A theoretical model of the formation morphologies of porous silicon”, J. Electrochem. Soc., 17, 533(1988)
[31] L. C. Chen, C. K. Chen, and S. L. Wei, D. M. Bhusari and K. H. Chen, Y. F. Chen and Y. C. Jong, Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor ”, APL, vol.72, no.19(1998)
[32] C. Malone and J. Jorne, “Effect of irradiant wavelength during porous silicon formation”, Appl. Phys. Lett., vol.70, no.26(1997)
[33] Hong Yan and Xiao Hu, “Interfacial dynamics and formation of porous structure”, J. Appl. Phys., vol.73, no.9(1993)
[34] Andrzej Badziam, “Stability of Silicon Carbonnitride Phases”, J. Am. Ceram. Soc., vol.85, no.1(2002)
[35] Z. X. Cao, “Nanocrystalline silicon carbonitride thin film prepared by plasma beamassisted deposition”, Thin Solid Films 401(2001) 94-101
校內:3005-07-10公開