| 研究生: |
陳宗王武 Chen, Tsung-Wu |
|---|---|
| 論文名稱: |
微構件剖面對脆性蜂巢材料強度之影響 |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 蜂巢材料 |
| 外文關鍵詞: | Honeycomb |
| 相關次數: | 點閱:63 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
細胞型材料因具備質量輕、低熱傳導與高吸能等優點,已廣泛應用於輕質結構工程上。細胞型材料於土木結構上之應用首推三明治層版結構,其心材通常是由具變斷面微觀構件之蜂巢或泡沫材料所構成,且其力學行為將隨微觀構件幾何形狀不同而有所改變。本文利用偉布分析及線彈性破壞力學理論,首先研究具有變斷面微觀構件之蜂巢材料,於承受單軸載重作用下之力學行為,分別針對蜂巢材料中含巨觀裂紋與否及變斷面微觀構件中有無微裂紋存在,分析此類材料之破裂性質。結果發現不含巨觀裂紋之蜂巢材料於單軸載重作用下,存在一最佳形狀之微觀構件,以獲得最大之單軸強度,此外,存在於微觀構件中之微小裂紋,因大小、分佈及多寡不同,使得蜂巢材料之破裂模數並非定值。另外,利用有限元素套裝軟體ABAQUS建立具變斷面微觀構件蜂巢結構之分析模型,對含有巨觀裂紋之蜂巢材料進行數值分析,求得於不同相對密度及微觀構件幾何形狀條件下,蜂巢結構之破裂韌性及快速脆性破壞強度,且經分析與整理獲得最佳化微結構設計公式。最後,則考慮雙軸載重對蜂巢材料破壞之影響,建立具變斷面微觀構件脆性蜂巢材料之雙軸破壞包絡面。
none
參考文獻
[1] L.J. Gibson and M.F. Ashby, “Cellular solid: Structure & Properties,” 2nd edition, Pergamon Press, Oxford (1998).
[2] A.E. Simone and L.J. Gibson, “Aluminum foams produced by liquid-state processes,” Acta Mater. , Vol. 46, pp 3109-3123(1998).
[3] A.E. Simone and L.J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater. , Vol.46, pp 2139-2150 (1998).
[4] C.H. Chuang, “Mechanical properties of honeycombs with plateau borders,” Ph.D. dissertation, Dept. of Civil Engng., National Cheng Kung University, Taiwan (2002).
[5] W.E. Warren and A.M. Kraynik, “Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials,” Mech. Mater. , Vol. 6, pp 27-37 (1987).
[6] J. Chung and A.M. Waas, “The elastic properties of circular cell and elliptical cell honeycombs,” Acta Mechanica , Vol.144, pp 29-42 (2000).
[7] C.H. Chuang and J.S. Huang, “Effects of solid distribution on the elastic buckling of honeycombs. Int. J. Mech. Sci. (2002), in press.
[8] C.H. Chuang and J.S. Huang, “Elastic moduli and plastic collapse strength of hexagonal honeycombs with plateau borders,” Int. J. Mech. Sci. (2001), submitted.
[9] C.H. Chuang and J.S. Huang, “Yield surfaces for hexagonal honeycombs with plateau borders under in-plane biaxial loads,” Acta Mechanica (2002), accepted.
[10] J.S. Huang and C.Y. Chou, “Survival probability for brittle honeycombs under in-plane biaxial loading,” Journal of Materials Science, Vol.34, pp 4945-4954 (1999).
[11] J.S. Huang and S.Y. Liu,” Fatigue of honeycombs under in-plane multiaxial loads,” Dept. of Civil Engng., National Cheng Kung University, Taiwan (2000).
[12] S.K. Maiti, M.F. Ashby and L.J. Gibson, ”Fracture Toughness of Brittle Cellular,” Scripta Metallurgica, Vol. 18, pp. 213-217. (1984).
[13] J. S. Huang and L. J. Gibson,” Fracture toughness of brittle honeycombs,” Acta Metall. Mater. , Vol.39, No.7, pp. 1617-1626. (1991).
[14] J. S. Huang and L. J. Gibson,” Fracture toughness of brittle foams,” Acta Metall. Mater. , Vol.39, No.7, pp. 1627-1636. (1991).
[15] J.S. Huang and J.Y. Lin,” Mixed-mode fracture of brittle cellular materials,” Journal of Materials Science, Vol.31, pp. 2647-2652. (1996).
[16] J.S. Huang and M.S. Chiang, “Effects of microstructure, specimen and loading geometries on of brittle honeycombs,” Engineering Fracture Mechanics, Vol. 54, No. 6, pp 812-821 (1996).
[17] A. De S. Jayatilaka, ”Fracture of engineering brittle materials, New York,” Applied Science (1979).
[18] W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech., Vol. 18, pp 293-297 (1951).