簡易檢索 / 詳目顯示

研究生: 阮玉勝
Thang, Nguyen Ngoc
論文名稱: 膠體原的合成、特性探討及其對奈米銀結構體之誘導研究
Synthesis and Characterization of Predesigned Gelators and Their Templated Fabrication of Silver Nanoconstructions
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 207
中文關鍵詞: 膠體Cholesteryl pyridine carbamate聚乙烯醇殼聚醣丙烯酸奈米銀結構體
外文關鍵詞: Cholesteryl pyridine carbamate, Soft template, Nanotube, Silver nanowire, Poly(vinyl alcohol), Chitosan, UV irradiation, Hydrogel thin films, Silver nanoparticle, Biomedical applications
相關次數: 點閱:153下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝膠於材料科學、環境科學、奈米科技、再生醫學及藥物輸送等基礎領域的應用上均有重大的貢獻,在軟性材料領域中佔有一席之地。本研究設計、合成並鑑定兩種新穎的凝膠材料,分別為分子凝膠及聚合物凝膠,並進一步探討凝膠於製備銀奈米結構之軟性基板特性。
    首先本研究設計並合成含膽固醇基團之凝膠分子cholesteryl-pyridine-carbamate (CPC),並探討此具有光學活性之凝膠體於不同單一溶劑和混合溶劑下的自組裝行為,以得到特殊的自組裝型態。多種檢測證實CPC凝膠體可於17種溶劑下形成凝膠,並具有高度規則的奈米纖維結構,特別是在水-苯甲醚以及水-乙醇的混合溶劑中此光學活性凝膠體會自組裝形成奈米管狀結構。為了探討軟性材料於奈米加工製程的應用潛力,本研究進一步利用CPC於水-苯甲醚混合溶劑系統所形成奈米管,作為製備銀奈米結構,包含銀奈米鏈段及銀奈米線的軟性基板。藉由室溫下的銀鏡反應可得直徑於20~70奈米且長度達數百微米之極高長徑比銀奈米線。研究結果顯示該系統不僅提供另一種奈米元件製備的方式,亦能使奈米材料應用於不同領域之前瞻性研究。
    第二類凝膠體為利用聚乙烯醇 (PVA)、殼聚醣 (CTS)與作為交聯劑的丙烯酸 (AA)經紫外光照射聚合而成的一系列生物相容性水凝膠薄膜,且聚合反應過程中無添加任何具生物毒性的光起始劑。研究中使用數種分析工具檢測PVA/CTS水凝膠薄膜特性如膨潤現象、分子間化學鍵結、分子結構、熱性質、結晶度、表面及內部結構形態,以及UV照射時間及AA濃度對上述性質之關係。SEM結果顯示水凝膠體薄膜內部呈現分布均勻的多孔性結構,其可逆的膨潤現象可藉由pH值調整。此外為了應用此水凝膠薄膜系統於前瞻性生物醫學領域,此研究葡萄糖作為還原劑,氫氧化鈉為催化劑進行硝酸銀的in-situ還原反應,成功以綠色方法合成出無毒性之負載銀奈米粒子之PVA/CTS水凝膠薄膜複合材料。此薄膜複合材料以數種分析儀器及機械性質量測儀器進行檢測,結果顯示高度交聯而緻密的多孔網狀基板可有效地防止銀奈米粒子的聚集,拉伸試驗顯示於水凝膠網狀結構中存在分散均勻之銀奈米粒子可有效提高複合膜之彈性係數。上述結果顯示PVA/CTS水凝膠薄膜及其奈米複合薄膜同時具備酸鹼性響應、抗菌性及高機械性質等優點,可預期其在生物醫學如傷口敷料有的應用價值。

    Gels, one of the most important class of soft materials, have received a great interest in terms of both fundamental and practical application in a variety of fields such as material science, environmental science, nanotechnology, regenerative medicine and drug delivery. Herein, two attractive types of gels, molecular gels and polymeric gels, have been designed, synthesized, characterized, and further investigated as soft templates for fabrication of silver nanoconstructions.
    For the first gel type, a molecular gelator based on cholesterol, cholesteryl-pyridine-carbamate (CPC), has been designed and synthesized. The self-assembly behaviors of this chiral gelator in various organic solvents and mixed solvents have been examined in order to obtain specific molecular aggregations. A number of testing means confirmed that the CPC gelator formed the gel in 17-solvent examinations with well-ordered nanofibrous structures. Especially, the chiral gelator promoted the formation of long nanotubes in the mixed solvents of water-anisole and water-ethanol. To realize the potential applications of soft materials in the bottom-up nanofabrication, the CPC nanotubes in the water-anisole system have been further developed as the soft templates for the fabrication of silver nanostructures, especially silver nanochains and silver nanowires. The ultra-high aspect ratio silver nanowires with diameters in the range of 20-70 nm and lengths up to hundreds of micrometers have been obtained via the classic silver mirror reaction at room temperature. Based on these results, the author anticipated that such system may not only advance the field of nanodevice fabrication, but also enable the development of various new nanomaterials for diverse promising applications.
    For the second gel type, a series of hydrogel thin films based on biocompatible polymers of poly(vinyl alcohol) (PVA) and chitosan (CTS) has been synthesized via ultraviolet (UV) irradiation using acrylic acid (AA) monomer as a crosslinker, without the addition of any other photo-initiator. The characteristics of the PVA/CTS hydrogel thin films, such as swelling behaviors, intermolecular chemical bonds, molecular structures, thermal behaviors, degrees of crystallinity, morphologies of the surfaces and internal structure, and their relationship to the UV irradiation time and AA concentration, have been examined by several analysis tools. It confirmed that the hydrogel films encompassed a uniform inter-porous structure and exhibited reversible swelling in response to changes in the pH of the media. To further extend promising applications of the prepared hydrogels for biomedical field, a green synthesis of silver nanoparticle-loaded PVA/CTS hydrogel thin films has been performed through the in situ reduction of silver nitrate by using glucose as a non-toxic reducing agent and sodium hydroxide as an accelerator. The composite films were characterized using several analysis tools and mechanical test. The results showed that the nanoparticle agglomeration was prevented through the use of the high-crosslinking and dense inter-porous network as an effective nanoreactor template. The tensile test revealed that the effective incorporation of silver nanoparticles within the hydrogel networks rendered the composite films more elastic. From these results, the author expected that the PVA/CTS hydrogel thin films and their nanocomposite films could provide smart hydrogels with some advantages of pH-responsive, antibacterial and good mechanical properties for biomedical applications such as wound dressing.

    Acknowledgement i Abstract ii 中文摘要 v Table of contents vii List of tables xiii List of figures and schemes xiv Abbreviations and Symbols xxiii Chapter 1. Introduction 1 1.1 Overview 1 1.2 Objectives and scopes of the study 7 1.3 References 9 PART I. MOLECULAR GEL AND ITS APPLICATIONS 13 Chapter 2. Literature review 14 2.1 Introduction 14 2.2 Classification of molecular gelators 15 2.2.1 Hydrogelators 15 2.2.1.1 Amino acid and dipeptide derivatives 15 2.2.1.2 Nucleoside derivatives 16 2.2.1.3 Carbohydrate-based derivatives 18 2.2.1.4 Gemini surfactants 18 2.2.2 Organogelators 20 2.2.2.1 ALS, A(LS)2 and A(LS)3 derivatives 20 2.2.2.2 Fatty acid derivatives 22 2.2.2.3 Sugar derivatives 23 2.2.2.4 Amino acid derivatives 24 2.2.2.5 Nucleoside derivatives 25 2.2.2.6 Urea derivatives 25 2.3 Templated techniques for synthesis of inorganic nanostructures 26 2.3.1 Molecular gels based templates 26 2.3.1.1 Simple gelators 26 2.3.1.2 Cholesterol-based gelators 28 2.3.1.3 Sugar-based gelators 29 2.3.1.4 Amide-, amino acid-, peptide-based gelators 31 2.3.2 Strategies for templated techniques based on LMWGs 32 2.4 Conclusions 34 2.5 References 34 Chapter 3. An Organogel of Cholesteryl Pyridine Carmbamate: Water-induced Nanofiber-to-Nanotube Transformation 44 Abstract 44 3.1 Introduction 45 3.2 Experimental 46 3.2.1 Chemicals 46 3.2.2 Synthesis of CPC 46 3.2.3 Gelation behaviors 47 3.2.4 Preparation of self-assembled CPC nanotubes 49 3.2.5 Instrumental analyses 49 3.3 Results and discussion 50 3.3.1 Synthesis and characterization of CPC 50 3.3.2 Gelation behaviors 51 3.3.3 Thermotropic properties of organogels 52 3.3.4 Morphologies of organogels 54 3.3.5 Driving force analysis 55 3.3.6 Water-induced nanofiber-to-nanotube transformation 58 3.4 Conclusions 62 3.5 References 62 Chapter 4. Wet Chemical Synthesis of Ultralong Silver Nanowires Based on a Soft Template of Cholesteryl Pyridine Carbamate Organogel 66 Abstract 66 4.1 Introduction 67 4.2 Experimental 70 4.2.1 General methods 70 4.2.2 Preparation of silver nanostructures 71 4.3 Results and Discussion 72 4.3.1 Formation of the complex gel 72 4.3.2 Thermotropic properties of complex gel 74 4.3.3 Characterization of coordination and driving forces 75 4.3.4 Morphology of complex gel 81 4.3.5 Organogel template directed synthesis of silver nanostructures 83 4.4 Conclusions 91 4.5 References 92 PART II. POLYMERIC GEL AND ITS APPLICATIONS 96 Chapter 5. Literature review 97 5.1 Introduction 97 5.2 Polymer based hydrogel systems 99 5.2.1 Polysaccharide hydrogels 100 5.2.1.1 Chitosan-based hydrogels 100 5.2.1.1.1 Chitosan-based physical hydrogels 100 5.2.1.1.2 Chitosan-based chemical crosslinked hydrogels 103 5.2.1.2 Alginate-based hydrogels 107 5.2.1.3 Hyaluronic acid-based hydrogels 108 5.2.2 Synthetic polymer-based hydrogels 109 5.2.2.1 Poly(vinyl alcohol)-based hydrogels 109 5.2.2.1.1 PVA-based physical hydrogels 110 5.2.2.1.2 PVA-based chemical crosslinked hydrogels 110 5.2.2.2 Poly(acrylic acid)-based hydrogels 113 5.3 Hydrogel thin films 114 5.3.1 Crosslinking by high energy irradiation 115 5.3.2 Crosslinking with reactive groups 115 5.3.3 Crosslinking using the addition of multi-functional monomers 116 5.3.4 Physical crosslinked film by the layer-by-layer technique 118 5.4 Conclusions 119 5.5 References 120 Chapter 6. Fabrication and Characterization of Poly(vinyl alcohol)/Chitosan Hydrogel Thin Films via UV Irradiation 137 Abstract 137 6.1 Introduction 138 6.2 Experimental 141 6.2.1 Materials 141 6.2.2 Preparation of the hydrogel thin films 141 6.2.3 Gel-fraction measurements 142 6.2.4 Swelling measurements 143 6.2.5 Instrumental analyses 144 6.3 Results and Discussion 145 6.3.1 Appearance of the hydrogel thin films 145 6.3.2 Fourier-transform infrared spectroscopy 147 6.3.3 X-ray diffraction 149 6.3.4 Differential scanning calorimetry 150 6.3.5 Thermogravimetric analysis 153 6.3.6 Gel fractions 155 6.3.7 Swelling behaviors 160 6.3.8 Morphological studies 167 6.4 Conclusions 170 6.5 References 171 Chapter 7. A Green Method for in Situ Synthesis of Poly(vinyl alcohol)/Chitosan Hydrogel Thin Films with Entrapped Silver Nanoparticles 176 Abstract 176 7.1 Introduction 177 7.2 Experimental 180 7.2.1 Materials 180 7.2.2 Fabrication of AgNPs in the hydrogel thin films 180 7.2.3 Instrumental analyses 181 7.3 Results and Discussion 183 7.3.1 Template-mediated in situ fabrication of AgNPs in the hydrogel thin films 183 7.3.2 UV/Vis analyses 185 7.3.3 Morphological studies 186 7.3.4 XRD measurements 189 7.3.5 FTIR characterizations 190 7.3.6 Mechanical properties 192 7.4 Conclusions 194 7.5 References 195 Chapter 8. Conclusions 199 APPENDICES 202

    Lloyd, D. J., Colloid Chemistry. The Chemical Catalog Co.: New York, 1926; Vol. 1, p 767–782.
    Graham, T., Liquid Diffusion Applied to Analysis. Philosophical Transactions of the Royal Society of London 1861, 151, 183–224.
    Flory, P. J., Introductory lecture. Faraday Discussions of the Chemical Society 1974, 57, 7-18.
    Terech, P.; Weiss, R. G., Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews 1997, 97, (8), 3133-3160.
    Raghavan, S. R.; Cipriano, B. H., Molecular Gels, Materials with Self-Assembled Fibrillar Networks. Weiss, R. G.; Terech, P., Eds.; Springer: Dordrecht, 2006; p 233- 244.
    Li, J.-L.; Liu, X. Y., Engineering of Small-Molecule Gels Based on the Thermodynamics and Kinetics of Fiber Formation. In Soft Fibrillar Materials, Wiley-VCH Verlag GmbH & Co. KGaA: 2013; pp 77-113.
    Angelova, L. V.; Terech, P.; Natali, I.; Dei, L.; Carretti, E.; Weiss, R. G., Cosolvent Gel-like Materials from Partially Hydrolyzed Poly(vinyl acetate)s and Borax. Langmuir 2011, 27, (18), 11671-11682.
    Vintiloiu, A.; Leroux, J.-C., Organogels and their use in drug delivery - A review. Journal of Controlled Release 2008, 125, (3), 179-192.
    Hartgerink, J. D.; Zubarev, E. R.; Stupp, S. I., Supramolecular one-dimensional objects. Current Opinion in Solid State and Materials Science 2001, 5, (4), 355-361.
    Dawn, A.; Shiraki, T.; Haraguchi, S.; Tamaru, S.-i.; Shinkai, S., What Kind of “Soft Materials” Can We Design from Molecular Gels? Chemistry – An Asian Journal 2011, 6, (2), 266-282.
    Duan, P.; Cao, H.; Zhang, L.; Liu, M., Gelation induced supramolecular chirality: chirality transfer, amplification and application. Soft Matter 2014, (Accepted Manuscript).
    Yan, Y.; Lin, Y.; Qiao, Y.; Huang, J., Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter 2011, 7, (14), 6385-6398.
    Caran, K. L.; Lee, D.-C.; Weiss, R. G., Molecular Gels and their Fibrillar Networks. In Soft Fibrillar Materials, Wiley-VCH Verlag GmbH & Co. KGaA: 2013; pp 1-75.
    Li, J.-L.; Liu, X.-Y., Architecture of Supramolecular Soft Functional Materials: From Understanding to Micro-/Nanoscale Engineering. Advanced Functional Materials 2010, 20, (19), 3196-3216.
    Raghavan, S. R., Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks†. Langmuir 2009, 25, (15), 8382-8385.
    Lescanne, M.; Colin, A.; Mondain-Monval, O.; Fages, F.; Pozzo, J. L., Structural Aspects of the Gelation Process Observed with Low Molecular Mass Organogelators. Langmuir 2003, 19, (6), 2013-2020.
    Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K., High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie International Edition 2008, 47, (42), 8002-8018.
    Jin, Q.; Zhang, L.; Cao, H.; Wang, T.; Zhu, X.; Jiang, J.; Liu, M., Self-Assembly of Copper(II) Ion-Mediated Nanotube and Its Supramolecular Chiral Catalytic Behavior. Langmuir 2011, 27, (22), 13847-13853.
    Majumder, J.; Deb, J.; Das, M. R.; Jana, S. S.; Dastidar, P., Designing a simple organic salt-based supramolecular topical gel capable of displaying in vivo self-delivery application. Chemical Communications 2014, 50, (14), 1671-1674.
    Bergeret-Galley, C.; Latouche, X.; Illouz, Y.-G., The Value of a New Filler Material in Corrective and Cosmetic Surgery: DermaLive and DermaDeep. Aesth. Plast. Surg. 2001, 25, (4), 249-255.
    Jenning, V.; Gysler, A.; Schäfer-Korting, M.; Gohla, S. H., Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. European Journal of Pharmaceutics and Biopharmaceutics 2000, 49, (3), 211-218.
    Chien, C.-C.; Liu, J.-H., Multistimuli-Responsive Organogels Based on a Chiral Azo Gelator Without Hydrogen Bond Assistance. Science of Advanced Materials 2014, 6, (1), 111-119.
    Tao, L.; Huo, Z.; Dai, S.; Ding, Y.; Zhu, J.; Zhang, C.; Zhang, B.; Yao, J.; Nazeeruddin, M. K.; Grätzel, M., Stable Quasi-Solid-State Dye-Sensitized Solar Cells Using Novel Low Molecular Mass Organogelators and Room-Temperature Molten Salts. The Journal of Physical Chemistry C 2014.
    Sugiyasu, K.; Fujita, N.; Shinkai, S., Visible-Light-Harvesting Organogel Composed of Cholesterol-Based Perylene Derivatives. Angewandte Chemie 2004, 116, (10), 1249-1253.
    Llusar, M.; Sanchez, C., Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators†. Chemistry of Materials 2008, 20, (3), 782-820.
    Xiong, Y.; Mayers, B. T.; Xia, Y., Some recent developments in the chemical synthesis of inorganic nanotubes. Chemical Communications 2005, (40), 5013-5022.
    Shimizu, T.; Masuda, M.; Minamikawa, H., Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews 2005, 105, (4), 1401-1444.
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A., Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews 2011, 111, (6), 3736-3827.
    Wilder, E. A.; Hall, C. K.; Spontak, R. J., Physical organogels composed of amphiphilic block copolymers and 1,3:2,4-dibenzylidene-D-sorbitol. Journal of Colloid and Interface Science 2003, 267, (2), 509-518.
    Li, J.; Gao, Y.; Kuang, Y.; Shi, J.; Du, X.; Zhou, J.; Wang, H.; Yang, Z.; Xu, B., Dephosphorylation of d-Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society 2013, 135, (26), 9907-9914.
    Kennedy, J. F.; Garaita, M. G., Physical networks polymers and gels. Burchard, W.; Ross-Murphy, S. B. Eds.; Elsevier, London. 1990.
    Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E., Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release 2014, (Accepted).
    Bemmelen, J. M. V., Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Zeitschr f Chem und Ind der Kolloide 1907, 1, (7), 213-214.
    Wichterle, O.; Lím, D., Hydrophilic Gels for Biological Use. Nature 1960, 185, 117-118.
    Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001, 53, (3), 321-339.
    Dragan, E. S., Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal 2014, 243, (0), 572-590.
    Wang, A.; Huang, J.; Yan, Y., Hierarchical molecular self-assemblies: construction and advantages. Soft Matter 2014, 10, (19), 3362-3373.
    Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 2012, 64, Supplement, (0), 223-236.
    Jagur-Grodzinski, J., Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies 2010, 21, (1), 27-47.
    Schwall, C.; Banerjee, I., Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering. Materials 2009, 2, (2), 577-612.
    Morgan, P. B.; Efron, N.; Hill, E. A.; Raynor, M. K.; Whiting, M. A.; Tullo, A. B., Incidence of keratitis of varying severity among contact lens wearers. British Journal of Ophthalmology 2005, 89, (4), 430-436.
    Lim, H. L.; Hwang, Y.; Kar, M.; Varghese, S., Smart hydrogels as functional biomimetic systems. Biomaterials Science 2014, 2, (5), 603-618.
    Croisier, F.; Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 2013, 49, (4), 780-792.
    Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M., Cyclodextrin-based hydrogels toward improved wound dressings. Critical Reviews in Biotechnology 2013, 0, (0), 1-10.
    Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y.-J.; Narain, R.; Idota, N.; Hoffman, J., Smart Hydrogels. In Smart Biomaterials, Springer Japan: 2014; pp 9-65.
    Weiss, R. G.; Terech, P., Molecular Gels. Springer: 2006.
    Sagiri, S. S.; Behera, B.; Rafanan, R. R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D., Organogels as Matrices for Controlled Drug Delivery: A Review on the Current State. Soft Materials 2013, 12, (1), 47-72.
    Abdallah, D. J.; Weiss, R. G., Organogels and Low Molecular Mass Organic Gelators. Advanced Materials 2000, 12, (17), 1237-1247.
    Yu, X.; Chen, L.; Zhang, M.; Yi, T., Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chemical Society Reviews 2014.
    Sangeetha, N. M.; Maitra, U., Supramolecular gels: Functions and uses. Chemical Society Reviews 2005, 34, (10), 821-836.
    Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B., Control of molecular gelation by chemical stimuli. Chemical Society Reviews 2013, 42, (17), 7086-7098.
    Jung, J. H.; Lee, J. H.; Silverman, J. R.; John, G., Coordination polymer gels with important environmental and biological applications. Chemical Society Reviews 2013, 42, (3), 924-936.
    Wang, G.; Hamilton, A. D., Low molecular weight organogelators for water. Chemical Communications 2003, (3), 310-311.
    Estroff, L. A.; Hamilton, A. D., Water Gelation by Small Organic Molecules. Chemical Reviews 2004, 104, (3), 1201-1218.
    Menger, F. M.; Venkatasubban, K. S., A carbon-13 nuclear magnetic resonance study of dibenzoylcystine gels. The Journal of Organic Chemistry 1978, 43, (17), 3413-3414.
    Menger, F. M.; Caran, K. L., Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations. Journal of the American Chemical Society 2000, 122, (47), 11679-11691.
    Milanesi, L.; Hunter, C. A.; Tzokova, N.; Waltho, J. P.; Tomas, S., Versatile Low-Molecular-Weight Hydrogelators: Achieving Multiresponsiveness through a Modular Design. Chemistry – A European Journal 2011, 17, (35), 9753-9761.
    Suzuki, M.; Hanabusa, K., l-Lysine-based low-molecular-weight gelators. Chemical Society Reviews 2009, 38, (4), 967-975.
    Friggeri, A.; van der Pol, C.; van Bommel, K. J. C.; Heeres, A.; Stuart, M. C. A.; Feringa, B. L.; van Esch, J., Cyclohexane-Based Low Molecular Weight Hydrogelators: A Chirality Investigation. Chemistry – A European Journal 2005, 11, (18), 5353-5361.
    Ryan, D. M.; Doran, T. M.; Anderson, S. B.; Nilsson, B. L., Effect of C-Terminal Modification on the Self-Assembly and Hydrogelation of Fluorinated Fmoc-Phe Derivatives. Langmuir 2011, 27, (7), 4029-4039.
    Gellert, M.; Lipsett, M. N.; Davies, D. R., Helix formation by guanylic acid. Proceedings of the National Academy of Sciences 1962, 48, (12), 2013-2018.
    Moreau, L.; Barthélémy, P.; El Maataoui, M.; Grinstaff, M. W., Supramolecular Assemblies of Nucleoside Phosphocholine Amphiphiles. Journal of the American Chemical Society 2004, 126, (24), 7533-7539.
    Iwaura, R.; Yoshida, K.; Masuda, M.; Yase, K.; Shimizu, T., Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles. Chemistry of Materials 2002, 14, (7), 3047-3053.
    Park, S. M.; Lee, Y. S.; Kim, B. H., Novel low-molecular-weight hydrogelators based on 2[prime or minute]-deoxyuridine. Chemical Communications 2003, (23), 2912-2913.
    Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T., Self-Assembly of a Sugar-Based Gelator in Water:  Its Remarkable Diversity in Gelation Ability and Aggregate Structure. Langmuir 2001, 17, (23), 7229-7232.
    Kobayashi, H.; Friggeri, A.; Koumoto, K.; Amaike, M.; Shinkai, S.; Reinhoudt, D. N., Molecular Design of “Super” Hydrogelators:  Understanding the Gelation Process of Azobenzene-Based Sugar Derivatives in Water. Organic Letters 2002, 4, (9), 1423-1426.
    Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I., First Thermally Responsive Supramolecular Polymer Based on Glycosylated Amino Acid. Journal of the American Chemical Society 2002, 124, (37), 10954-10955.
    Yan, N.; He, G.; Zhang, H.; Ding, L.; Fang, Y., Glucose-Based Fluorescent Low-Molecular Mass Compounds: Creation of Simple and Versatile Supramolecular Gelators. Langmuir 2009, 26, (8), 5909-5917.
    Menger, F. M.; Zhang, H.; Caran, K. L.; Seredyuk, V. A.; Apkarian, R. P., Gemini-Induced Columnar Jointing in Vitreous Ice. Cryo-HRSEM as a Tool for Discovering New Colloidal Morphologies. Journal of the American Chemical Society 2002, 124, (7), 1140-1141.
    Menger, F. M.; Seredyuk, V. A.; Apkarian, R. P.; Wright, E. R., Colloidal Assemblies of Branched Geminis Studied by Cryo-etch-HRSEM. Journal of the American Chemical Society 2002, 124, (42), 12408-12409.
    Berthier, D.; Buffeteau, T.; Léger, J.-M.; Oda, R.; Huc, I., From Chiral Counterions to Twisted Membranes. Journal of the American Chemical Society 2002, 124, (45), 13486-13494.
    Shankar, B. V.; Patnaik, A., A New pH and Thermo-Responsive Chiral Hydrogel for Stimulated Release. The Journal of Physical Chemistry B 2007, 111, (31), 9294-9300.
    Newkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Russo, P. S.; Theriot, K. J.; Moorefield, C. N.; Rogers, L. E.; Miller, J. E., Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels. Journal of the American Chemical Society 1990, 112, (23), 8458-8465.
    Haines, S. R.; Harrison, R. G., Novel resorcinarene-based pH-triggered gelator. Chemical Communications 2002, (23), 2846-2847.
    Patil, S. P.; Jeong, H. S.; Kim, B. H., A low-molecular-weight supramolecular hydrogel of riboflavin bolaamphiphile for VEGF-siRNA delivery. Chemical Communications 2012, 48, (71), 8901-8903.
    Lin, Y. C.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 24. A novel gelator of organic liquids and the properties of its gels. Macromolecules 1987, 20, (2), 414-417.
    Žinic, M.; Vögtle, F.; Fages, F., Cholesterol-Based Gelators. In Low Molecular Mass Gelator, Springer Berlin Heidelberg: 2005; Vol. 256, pp 39-76.
    Mukkamala, R.; Weiss, R. G., Physical Gelation of Organic Fluids by Anthraquinone−Steroid-Based Molecules. Structural Features Influencing the Properties of Gels. Langmuir 1996, 12, (6), 1474-1482.
    Ishi-i, T.; Iguchi, R.; Snip, E.; Ikeda, M.; Shinkai, S., [60]Fullerene Can Reinforce the Organogel Structure of Porphyrin-Appended Cholesterol Derivatives:  Novel Odd−Even Effect of the (CH2)n Spacer on the Organogel Stability. Langmuir 2001, 17, (19), 5825-5833.
    James, T. D.; Kawabata, H.; Ludwig, R.; Murata, K.; Shinkai, S., Cholesterol as a versatile platform for chiral recognition. Tetrahedron 1995, 51, (2), 555-566.
    Peng, J.; Xia, H.; Liu, K.; Gao, D.; Yang, M.; Yan, N.; Fang, Y., Water-in-oil gel emulsions from a cholesterol derivative: Structure and unusual properties. Journal of Colloid and Interface Science 2009, 336, (2), 780-785.
    Yu, C.; Xue, M.; Liu, K.; Wang, G.; Fang, Y., Terthiophene Derivatives of Cholesterol-Based Molecular Gels and Their Sensing Applications. Langmuir 2014, 30, (5), 1257-1265.
    Wang, S.; Shen, W.; Feng, Y.; Tian, H., A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chemical Communications 2006, (14), 1497-1499.
    Koumura, N.; Kudo, M.; Tamaoki, N., Photocontrolled Gel-to-Sol-to-Gel Phase Transitioning of meta-Substituted Azobenzene Bisurethanes through the Breaking and Reforming of Hydrogen Bonds. Langmuir 2004, 20, (23), 9897-9900.
    Wang, C.; Sun, F.; Zhang, D.; Zhang, G.; Zhu, D., Cholesterol-substituted Tetrathiafulvalene (TTF) Compound: Formation of Organogel and Supramolecular Chirality. Chinese Journal of Chemistry 2010, 28, (4), 622-626.
    Pradeep, C. P.; Devi, M.; Dhir, A.; Dhir, P., New triangular steroid-based A(LS)3 type gelators for selective fluoride sensing application. RSC Advances 2014.
    Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S., Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation. Journal of the American Chemical Society 1994, 116, (15), 6664-6676.
    Lin, Y. C.; Kachar, B.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. Part 37. Novel family of gelators of organic fluids and the structure of their gels. Journal of the American Chemical Society 1989, 111, (15), 5542-5551.
    Jiao, T.; Gao, F.; Wang, Y.; Zhou, J.; Gao, F.; Luo, X., Supramolecular Gel and Nanostructures of Bolaform and Trigonal Cholesteryl Derivatives with Different Aromatic Spacers. Current Nanoscience 2012, 8, (1), 111-116.
    Lu, L.; Weiss, R. G., New Iyotropic phases (thermally-reversible organogels) of simple tertiary amines and related tertiary and quaternary ammonium halide salts. Chemical Communications 1996, (17), 2029-2030.
    Abdallah, D. J.; Sirchio, S. A.; Weiss, R. G., Hexatriacontane Organogels. The First Determination of the Conformation and Molecular Packing of a Low-Molecular-Mass Organogelator in Its Gelled State. Langmuir 2000, 16, (20), 7558-7561.
    Tachibana, T.; Kambara, H., The sense of twist in the fibrous aggregates from 12-hydroxystearic acid and its alkali metal soaps. Journal of Colloid and Interface Science 1968, 28, (1), 173-174.
    Terech, P., Small-angle-scattering study of 12-hydroxystearic physical organogels and lubricating greases. Colloid Polym Sci 1991, 269, (5), 490-500.
    Tachibana, T.; Mori, T.; Hori, K., Chiral Mesophases of 12-Hydroxyoctadecanoic Acid in Jelly and in the Solid State. II. A New Type of Mesomorphic Solid State. Bulletin of the Chemical Society of Japan 1981, 54, (1), 73-80.
    Daniel, J.; Rajasekharan, R., Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids. J Amer Oil Chem Soc 2003, 80, (5), 417-421.
    Pal, A.; Ghosh, Y. K.; Bhattacharya, S., Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids. Tetrahedron 2007, 63, (31), 7334-7348.
    Gronwald, O.; Shinkai, S., Sugar-Integrated Gelators of Organic Solvents. Chemistry – A European Journal 2001, 7, (20), 4328-4334.
    Friggeri, A.; Gronwald, O.; van Bommel, K. J. C.; Shinkai, S.; Reinhoudt, D. N., Charge-Transfer Phenomena in Novel, Dual-Component, Sugar-Based Organogels. Journal of the American Chemical Society 2002, 124, (36), 10754-10758.
    Wang, G.; Yang, H.; Cheuk, S.; Coleman, S., Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators. Beilstein Journal of Organic Chemistry 2011, 7, 234-242.
    Goyal, N.; Cheuk, S.; Wang, G., Synthesis and characterization of d-glucosamine-derived low molecular weight gelators. Tetrahedron 2010, 66, (32), 5962-5971.
    Hanabusa, K.; Kobayashi, H.; Suzuki, M.; Kimura, M.; Shirai, H., Organogel from L-leucine-containing surfactant in nonpolar solvents. Colloid Polym Sci 1998, 276, (3), 252-259.
    Brosse, N.; Barth, D.; Jamart-Grégoire, B., A family of strong low-molecular-weight organogelators based on aminoacid derivatives. Tetrahedron Letters 2004, 45, (52), 9521-9524.
    Debnath, S.; Shome, A.; Dutta, S.; Das, P. K., Dipeptide-Based Low-Molecular-Weight Efficient Organogelators and Their Application in Water Purification. Chemistry – A European Journal 2008, 14, (23), 6870-6881.
    Couffin-Hoarau, A.-C.; Motulsky, A.; Delmas, P.; Leroux, J.-C., In situ-Forming Pharmaceutical Organogels Based on the Self-Assembly of L-Alanine Derivatives. Pharm Res 2004, 21, (3), 454-457.
    Bastiat, G.; Leroux, J.-C., Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry 2009, 19, (23), 3867-3877.
    Jang, W.-D.; Aida, T., Dendritic Physical Gels:  Structural Parameters for Gelation with Peptide-Core Dendrimers. Macromolecules 2003, 36, (22), 8461-8469.
    Smith, D. K., Dendritic supermolecules - towards controllable nanomaterials. Chemical Communications 2006, (1), 34-44.
    Yun, Y. J.; Park, S. M.; Kim, B. H., Novel thymidine-based organogelators and their gelation behaviours. Chemical Communications 2003, (2), 254-255.
    Yoshikawa, I.; Yanagi, S.; Yamaji, Y.; Araki, K., Nucleoside-based organogelators: gelation by the G–G base pair formation of alkylsilylated guanosine derivatives. Tetrahedron 2007, 63, (31), 7474-7481.
    Simeone, L.; Milano, D.; De Napoli, L.; Irace, C.; Di Pascale, A.; Boccalon, M.; Tecilla, P.; Montesarchio, D., Design, Synthesis and Characterisation of Guanosine-Based Amphiphiles. Chemistry – A European Journal 2011, 17, (49), 13854-13865.
    Latxague, L.; Dalila, M.-J.; Patwa, A.; Ziane, S.; Chassande, O.; Godeau, G.; Barthélémy, P., Glycoside nucleoside lipids (GNLs): An intrusion into the glycolipids’ world? Comptes Rendus Chimie 2012, 15, (1), 29-36.
    Schoonbeek, F. S.; van Esch, J. H.; Hulst, R.; Kellogg, R. M.; Feringa, B. L., Geminal Bis-ureas as Gelators for Organic Solvents: Gelation Properties and Structural Studies in Solution and in the Gel State. Chemistry – A European Journal 2000, 6, (14), 2633-2643.
    Huang, Y.-D.; Dong, X.-L.; Zhang, L.-L.; Chai, W.; Chang, J.-Y., Structure–property correlation of benzoyl thiourea derivatives as organogelators. Journal of Molecular Structure 2013, 1031, (0), 43-48.
    Desvergne, J.-P.; Brotin, T.; Meerschaut, D.; Clavier, G.; Placin, F.; Pozzo, J.-L.; Bouas-Laurent, H., Spectroscopic properties and gelling ability of a set of rod-like 2,3-disubstituted anthracenes. New Journal of Chemistry 2004, 28, (2), 234-243.
    Clavier, G. M.; Pozzo, J. L.; Bouas-Laurent, H.; Liere, C.; Roux, C.; Sanchez, C., Organogelators for making porous sol-gel derived silica at two different length scales. Journal of Materials Chemistry 2000, 10, (7), 1725-1730.
    Llusar, M.; Pidol, L.; Roux, C.; Pozzo, J. L.; Sanchez, C., Templated Growth of Alumina-Based Fibers through the Use of Anthracenic Organogelators. Chemistry of Materials 2002, 14, (12), 5124-5133.
    Abdallah, D. J.; Weiss, R. G., The Influence of the Cationic Center, Anion, and Chain Length of Tetra-n-alkylammonium and -phosphonium Salt Gelators on the Properties of Their Thermally Reversible Organogels. Chemistry of Materials 2000, 12, (2), 406-413.
    Huang, X.; Weiss, R. G., Silica Structures Templated on Fibers of Tetraalkylphosphonium Salt Gelators in Organogels. Langmuir 2006, 22, (20), 8542-8552.
    Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Shinkai, S.; Sano, M.; Hojo, J., Organic gels are useful as a template for the preparation of hollow fiber silica. Chemical Communications 1998, (14), 1477-1478.
    Jung, J. H.; Lee, S.-H.; Yoo, J. S.; Yoshida, K.; Shimizu, T.; Shinkai, S., Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes. Chemistry – A European Journal 2003, 9, (21), 5307-5313.
    Jung, J.; Shinkai, S., Gels as Templates for Nanotubes. In Templates in Chemistry I, Schalley, C. A.; Vögtle, F.; Dötz, K. H., Eds. Springer Berlin Heidelberg: 2004; Vol. 248, pp 223-260.
    van Bommel, K. J. C.; Friggeri, A.; Shinkai, S., Organic Templates for the Generation of Inorganic Materials. Angewandte Chemie International Edition 2003, 42, (9), 980-999.
    Han, W. S.; Kang, Y.; Lee, S. J.; Lee, H.; Do, Y.; Lee, Y.-A.; Jung, J. H., Fabrication of Color-Tunable Luminescent Silica Nanotubes Loaded with Functional Dyes Using a Sol−Gel Cocondensation Method. The Journal of Physical Chemistry B 2005, 109, (44), 20661-20664.
    Jung, J. H.; Park, M.; Shinkai, S., Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chemical Society Reviews 2010, 39, (11), 4286-4302.
    80. Shimizu, T., Self-assembled lipid nanotube hosts: The dimension control for encapsulation of nanometer-scale guest substances. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, (17), 5137-5152.
    Jung, J. H.; Amaike, M.; Nakashima, K.; Shinkai, S., Preparation of novel silica structures using a library of carbohydrate gel assemblies as templates for sol-gel transcription. Journal of the Chemical Society, Perkin Transactions 2 2001, (10), 1938-1943.
    Lin, Y.; Qiao, Y.; Gao, C.; Tang, P.; Liu, Y.; Li, Z.; Yan, Y.; Huang, J., Tunable One-Dimensional Helical Nanostructures: From Supramolecular Self-Assemblies to Silica Nanomaterials. Chemistry of Materials 2010, 22, (24), 6711-6717.
    Bao, C.; Lu, R.; Xue, P.; Jin, M.; Tan, C.; Liu, G.; Zhao, Y., Generation of CdS Nano-Necklaces and NiS Nanotubes Templated by Sugar-Appended Hydrogel. Journal of Nanoscience and Nanotechnology 2006, 6, (3), 807-812.
    Tamaru, S.-i.; Nakamura, M.; Takeuchi, M.; Shinkai, S., Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. Organic Letters 2001, 3, (23), 3631-3634.
    Kawano, S.-i.; Tamaru, S.-i.; Fujita, N.; Shinkai, S., Sol–Gel Polycondensation of Tetraethyl Orthosilicate (TEOS) in Sugar-Based Porphyrin Organogels: Inorganic Conversion of a Sugar-Directed Porphyrinic Fiber Library through Sol–Gel Transcription Processes. Chemistry – A European Journal 2004, 10, (2), 343-351.
    Jung, J. H.; Rim, J. A.; Cho, E. J.; Lee, S. J.; Jeong, I. Y.; Kameda, N.; Masuda, M.; Shimizu, T., Stabilization of an asymmetric bolaamphiphilic sugar-based crown ether hydrogel by hydrogen bonding interaction and its sol–gel transcription. Tetrahedron 2007, 63, (31), 7449-7456.
    Sung, H. J.; Kim, E.; Soo, J. L.; Chang, G. L.; Lee, J. K.; Shim, S. L.; Jong, H. J., Morphological control of silica nanomaterials using sugar-based hydrogel with different anions. Bulletin of the Korean Chemical Society 2008, 29, (8), 1630-1632.
    Gao, P.; Zhan, C.; Liu, M., Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile. Langmuir 2005, 22, (2), 775-779.
    Matsui, H.; Gologan, B., Crystalline Glycylglycine Bolaamphiphile Tubules and Their pH-Sensitive Structural Transformation. The Journal of Physical Chemistry B 2000, 104, (15), 3383-3386.
    Matsui, H.; Pan, S.; Gologan, B.; Jonas, S. H., Bolaamphiphile Nanotube-Templated Metallized Wires. The Journal of Physical Chemistry B 2000, 104, (41), 9576-9579.
    Chen, C.-L.; Zhang, P.; Rosi, N. L., A New Peptide-Based Method for the Design and Synthesis of Nanoparticle Superstructures: Construction of Highly Ordered Gold Nanoparticle Double Helices. Journal of the American Chemical Society 2008, 130, (41), 13555-13557.
    Chen, C.-L.; Rosi, N. L., Preparation of Unique 1-D Nanoparticle Superstructures and Tailoring their Structural Features. Journal of the American Chemical Society 2010, 132, (20), 6902-6903.
    Zhan, C.; Wang, J.; Yuan, J.; Gong, H.; Liu, Y.; Liu, M., Synthesis of Right- and Left-Handed Silver Nanohelices with a Racemic Gelator. Langmuir 2003, 19, (22), 9440-9445.
    Gundiah, G.; Mukhopadhyay, S.; Tumkurkar, U. G.; Govindaraj, A.; Maitra, U.; Rao, C. N. R., Hydrogel route to nanotubes of metal oxides and sulfates. Journal of Materials Chemistry 2003, 13, (9), 2118-2122.
    Suzuki, M.; Nakajima, Y.; Sato, T.; Shirai, H.; Hanabusa, K., Fabrication of TiO2 using l-lysine-based organogelators as organic templates: control of the nanostructures. Chemical Communications 2006, (4), 377-379.
    Song, C.; Zhao, G.; Zhang, P.; Rosi, N. L., Expeditious Synthesis and Assembly of Sub-100 nm Hollow Spherical Gold Nanoparticle Superstructures. Journal of the American Chemical Society 2010, 132, (40), 14033-14035.
    Hwang, L.; Chen, C.-L.; Rosi, N. L., Preparation of 1-D nanoparticle superstructures with tailorable thicknesses using gold-binding peptide conjugates. Chemical Communications 2011, 47, (1), 185-187.
    George, J.; Thomas, K. G., Surface Plasmon Coupled Circular Dichroism of Au Nanoparticles on Peptide Nanotubes. Journal of the American Chemical Society 2010, 132, (8), 2502-2503.
    Llusar, M.; Sanchez, C., Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators†. Chemistry of Materials 2008, 20, (3), 782-820.
    Dastidar, P., Supramolecular gelling agents: can they be designed? Chemical Society Reviews 2008, 37, (12), 2699-2715.
    van Bommel, K. J. C.; Friggeri, A.; Shinkai, S., Organic Templates for the Generation of Inorganic Materials. Angewandte Chemie International Edition 2003, 42, (9), 980-999.
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A., Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews 2011, 111, (6), 3736-3827.
    Llusar, M.; Sanchez, C., Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators†. Chemistry of Materials 2008, 20, (3), 782-820.
    Masoomi, M. Y.; Morsali, A., Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coordination Chemistry Reviews 2012, 256, (23–24), 2921-2943.
    Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L., Multistimuli-Responsive Supramolecular Gels: Design Rationale, Recent Advances, and Perspectives. ChemPhysChem 2014, n/a-n/a.
    Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K., High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie International Edition 2008, 47, (42), 8002-8018.
    Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B., Control of molecular gelation by chemical stimuli. Chemical Society Reviews 2013, 42, (17), 7086-7098.
    Sangeetha, N. M.; Maitra, U., Supramolecular gels: Functions and uses. Chemical Society Reviews 2005, 34, (10), 821-836.
    Bastiat, G.; Leroux, J.-C., Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry 2009, 19, (23), 3867-3877.
    Couffin-Hoarau, A.-C.; Motulsky, A.; Delmas, P.; Leroux, J.-C., In situ-Forming Pharmaceutical Organogels Based on the Self-Assembly of L-Alanine Derivatives. Pharm Res 2004, 21, (3), 454-457.
    Zhao, F.; Ma, M. L.; Xu, B., Molecular hydrogels of therapeutic agents. Chemical Society Reviews 2009, 38, (4), 883-891.
    Vintiloiu, A.; Leroux, J.-C., Organogels and their use in drug delivery - A review. Journal of Controlled Release 2008, 125, (3), 179-192.
    Sagiri, S. S.; Behera, B.; Rafanan, R. R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D., Organogels as Matrices for Controlled Drug Delivery: A Review on the Current State. Soft Materials 2013, 12, (1), 47-72.
    Kumar, M.; Venkata Rao, K.; George, S. J., Supramolecular charge transfer nanostructures. Physical Chemistry Chemical Physics 2014, 16, (4), 1300-1313.
    Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A., Self-Assembled Gelators for Organic Electronics. Angewandte Chemie International Edition 2012, 51, (8), 1766-1776.
    Babu, S. S.; Praveen, V. K.; Ajayaghosh, A., Functional π-Gelators and Their Applications. Chemical Reviews 2014, 114, (4), 1973-2129.
    Shinkai, S.; Murata, K., Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers. Journal of Materials Chemistry 1998, 8, (3), 485-495.
    Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S., Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation. Journal of the American Chemical Society 1994, 116, (15), 6664-6676.
    Žinic, M.; Vögtle, F.; Fages, F., Cholesterol-Based Gelators. In Low Molecular Mass Gelator, Springer Berlin Heidelberg: 2005; Vol. 256, pp 39-76.
    Peng, J.; Xia, H.; Liu, K.; Gao, D.; Yang, M.; Yan, N.; Fang, Y., Water-in-oil gel emulsions from a cholesterol derivative: Structure and unusual properties. Journal of Colloid and Interface Science 2009, 336, (2), 780-785.
    Jiao, T.; Gao, F.; Wang, Y.; Zhou, J.; Gao, F.; Luo, X., Supramolecular Gel and Nanostructures of Bolaform and Trigonal Cholesteryl Derivatives with Different Aromatic Spacers. Current Nanoscience 2012, 8, (1), 111-116.
    Wang, C.; Sun, F.; Zhang, D.; Zhang, G.; Zhu, D., Cholesterol-substituted Tetrathiafulvalene (TTF) Compound: Formation of Organogel and Supramolecular Chirality. Chinese Journal of Chemistry 2010, 28, (4), 622-626.
    Yu, C.; Xue, M.; Liu, K.; Wang, G.; Fang, Y., Terthiophene Derivatives of Cholesterol-Based Molecular Gels and Their Sensing Applications. Langmuir 2014, 30, (5), 1257-1265.
    Zhao, Y.-L.; Aprahamian, I.; Trabolsi, A.; Erina, N.; Stoddart, J. F., Organogel Formation by a Cholesterol-Stoppered Bistable [2]Rotaxane and Its Dumbbell Precursor. Journal of the American Chemical Society 2008, 130, (20), 6348-6350.
    Wang, S.; Shen, W.; Feng, Y.; Tian, H., A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chemical Communications 2006, (14), 1497-1499.
    Gansäuer, A.; Winkler, I.; Klawonn, T.; Nolte, R. J. M.; Feiters, M. C.; Börner, H. G.; Hentschel, J.; Dötz, K. H., Novel Organometallic Gelators with Enhanced Amphiphilic Character: Structure−Property Correlations, Principles for Design, and Diversity of Gelation. Organometallics 2009, 28, (5), 1377-1382.
    Meléndez, R.; Carr, A.; Linton, B.; Hamilton, A., Controlling Hydrogen Bonding: From Molecular Recognition to Organogelation. In Molecular Self-Assembly Organic Versus Inorganic Approaches, Fuiita, M., Ed. Springer Berlin Heidelberg: 2000; Vol. 96, pp 31-61.
    Malik, S.; Kawano, S.-i.; Fujita, N.; Shinkai, S., Pyridine-containing versatile gelators for post-modification of gel tissues toward construction of novel porphyrin nanotubes. Tetrahedron 2007, 63, (31), 7326-7333.
    Takahashi, A.; Sakai, M.; Kato, T., Melting Temperature of Thermally Reversible Gel. VI. Effect of Branching on the Sol-Gel Transition of Polyethylene Gels. Polymer Journal 1980, 12, (5), 335-341.
    Terech, P.; Weiss, R. G., Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews 1997, 97, (8), 3133-3160.
    Liu, W.-T.; Tohnai, N.; Hisaki, I.; Miyata, M.; Chen, W.-T.; Wu, Y.-J.; Liu, J.-H., Thermoswitchable fluorescence organogels based on hydrogen bond-assisted chiral gelators. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, (4), 793-800.
    Gao, D.; Xue, M.; Peng, J.; Liu, J.; Yan, N.; He, P.; Fang, Y., Preparation and gelling properties of sugar-contained low-molecular-mass gelators: Combination of cholesterol and linear glucose. Tetrahedron 2010, 66, (16), 2961-2968.
    Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G., Direct Observation of Sol−Gel Conversion:  The Role of the Solvent in Organogel Formation. Journal of the American Chemical Society 2000, 122, (10), 2399-2400.
    Tong, H.; Hong, Y.; Dong, Y.; Ren, Y.; Häussler, M.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z., Color-Tunable, Aggregation-Induced Emission of a Butterfly-Shaped Molecule Comprising a Pyran Skeleton and Two Cholesteryl Wings. The Journal of Physical Chemistry B 2007, 111, (8), 2000-2007.
    Jin, Q.; Zhang, L.; Liu, M., Solvent-Polarity-Tuned Morphology and Inversion of Supramolecular Chirality in a Self-Assembled Pyridylpyrazole-Linked Glutamide Derivative: Nanofibers, Nanotwists, Nanotubes, and Microtubes. Chemistry – A European Journal 2013, 19, (28), 9234-9241.
    Chen, J.; Wiley, B. J.; Xia, Y., One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications. Langmuir 2007, 23, (8), 4120-4129.
    Chimentao, R. J.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E., Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chemical Communications 2004, (7), 846-847.
    Pang, Y. T.; Meng, G. W.; Fang, Q.; Zhang, L. D., Silver nanowire array infrared polarizers. Nanotechnology 2003, 14, 20-24.
    Hu, X.; Chan, C. T., Photonic crystals with silver nanowires as a near-infrared superlens. Applied Physics Letters 2004, 85, (9), 1520-1522.
    Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X., Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Advanced Functional Materials 2008, 18, (16), 2348-2355.
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A., Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews 2011, 111, (6), 3736-3827.
    Tian, M.; Wang, J.; Kurtz, J.; Mallouk, T. E.; Chan, M. H. W., Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Letters 2003, 3, (7), 919-923.
    Choi, J.; Sauer, G.; Nielsch, K.; Wehrspohn, R. B.; Gösele, U., Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio. Chemistry of Materials 2003, 15, (3), 776-779.
    Sloan, J.; M. Wright, D.; Bailey, S.; Brown, G.; P. E. York, A.; S. Coleman, K.; L. H. Green, M.; L. Hutchison, J.; Woo, H.-G., Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chemical Communications 1999, (8), 699-700.
    Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, (6669), 775-778.
    Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; LaBean, T. H., Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires. Nano Letters 2005, 5, (4), 693-696.
    Liu, D.; Park, S. H.; Reif, J. H.; LaBean, T. H., DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (3), 717-722.
    Yang, B.; Kamiya, S.; Shimizu, Y.; Koshizaki, N.; Shimizu, T., Glycolipid Nanotube Hollow Cylinders as Substrates:  Fabrication of One-Dimensional Metallic−Organic Nanocomposites and Metal Nanowires. Chemistry of Materials 2004, 16, (14), 2826-2831.
    Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications 2001, (7), 617-618.
    Liu, J.-H.; Tsai, C.-Y.; Chiu, Y.-H.; Hsieh, F.-M., The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature. Nanotechnology 2009, 20, (3), 035301.
    Liu, J.-H.; Hsieh, F.-M., Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature. Polymer Composites 2010, 31, (8), 1352-1359.
    Eisele, D. M.; Berlepsch, H. v.; Böttcher, C.; Stevenson, K. J.; Vanden Bout, D. A.; Kirstein, S.; Rabe, J. P., Photoinitiated Growth of Sub-7 nm Silver Nanowires within a Chemically Active Organic Nanotubular Template. Journal of the American Chemical Society 2010, 132, (7), 2104-2105.
    Liu, Q.; Wang, Y.; Li, W.; Wu, L., Structural Characterization and Chemical Response of a Ag-Coordinated Supramolecular Gel. Langmuir 2007, 23, (15), 8217-8223.
    Shimizu, T.; Masuda, M.; Minamikawa, H., Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews 2005, 105, (4), 1401-1444.
    Llusar, M.; Sanchez, C., Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators. Chemistry of Materials 2008, 20, (3), 782-820.
    Yan, Y.; Lin, Y.; Qiao, Y.; Huang, J., Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter 2011, 7, (14), 6385-6398.
    Shimizu, T., Self-assembled organic nanotubes: Toward attoliter chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (8), 2601-2611.
    Jung, J. H.; Park, M.; Shinkai, S., Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chemical Society Reviews 2010, 39, (11), 4286-4302.
    Li, Y.; Yang, X.-Y.; Feng, Y.; Yuan, Z.-Y.; Su, B.-L., One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications. Critical Reviews in Solid State and Materials Sciences 2012, 37, (1), 1-74.
    Morita, C.; Tanuma, H.; Kawai, C.; Ito, Y.; Imura, Y.; Kawai, T., Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing. Langmuir 2013, 29, (5), 1669-1675.
    Kumar, V. R. R.; Samal, A. K.; Sreeprasad, T. S.; Pradeep, T., Gold Nanorods Grown on Microgels Leading to Hexagonal Nanostructures. Langmuir 2007, 23, (17), 8667-8669.
    Gao, P.; Zhan, C.; Liu, M., Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile. Langmuir 2005, 22, (2), 775-779.
    Zhan, C.; Wang, J.; Yuan, J.; Gong, H.; Liu, Y.; Liu, M., Synthesis of Right- and Left-Handed Silver Nanohelices with a Racemic Gelator. Langmuir 2003, 19, (22), 9440-9445.
    Takahashi, A.; Sakai, M.; Kato, T., Melting Temperature of Thermally Reversible Gel. VI. Effect of Branching on the Sol-Gel Transition of Polyethylene Gels. Polymer Journal 1980, 12, (5), 335-341.
    Polyakov, N. E.; Khan, V. K.; Taraban, M. B.; Leshina, T. V.; Salakhutdinov, N. F.; Tolstikov, G. A., Complexation of Lappaconitine with Glycyrrhizic Acid:  Stability and Reactivity Studies. The Journal of Physical Chemistry B 2005, 109, (51), 24526-24530.
    Resendiz, M. J. E.; Noveron, J. C.; Disteldorf, H.; Fischer, S.; Stang, P. J., A Self-Assembled Supramolecular Optical Sensor for Ni(II), Cd(II), and Cr(III). Organic Letters 2004, 6, (5), 651-653.
    von Berlepsch, H.; Kirstein, S.; Hania, R.; Pugžlys, A.; Böttcher, C., Modification of the Nanoscale Structure of the J-Aggregate of a Sulfonate-Substituted Amphiphilic Carbocyanine Dye through Incorporation of Surface-Active Additives. The Journal of Physical Chemistry B 2007, 111, (7), 1701-1711.
    Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J. N.; Mann, S., Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates. Nano Letters 2003, 3, (3), 413-417.
    Yang, B.; Kamiya, S.; Yoshida, K.; Shimizu, T., Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders. Chemical Communications 2004, (5), 500-501.
    Ugarte, D.; Châtelain, A.; de Heer, W. A., Nanocapillarity and Chemistry in Carbon Nanotubes. Science 1996, 274, (5294), 1897-1899.
    Kuo, C. L.; Hwang, K. C., Nitrate Ion Promoted Formation of Ag Nanowires in Polyol Processes: A New Nanowire Growth Mechanism. Langmuir 2012, 28, (8), 3722-3729.
    Jiang, X. C.; Xiong, S. X.; Tian, Z. A.; Chen, C. Y.; Chen, W. M.; Yu, A. B., Twinned Structure and Growth of V-Shaped Silver Nanowires Generated by a Polyol−Thermal Approach. The Journal of Physical Chemistry C 2011, 115, (5), 1800-1810.
    Sun, X. M.; Li, Y. D., Cylindrical Silver Nanowires: Preparation, Structure, and Optical Properties. Advanced Materials 2005, 17, (21), 2626-2630.
    Eckhardt, S.; Brunetto, P. S.; Gagnon, J.; Priebe, M.; Giese, B.; Fromm, K. M., Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine. Chemical Reviews 2013, 113, (7), 4708-4754.
    Shemer, G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A. B., Chirality of Silver Nanoparticles Synthesized on DNA. Journal of the American Chemical Society 2006, 128, (34), 11006-11007.
    Nishida, N.; Yao, H.; Ueda, T.; Sasaki, A.; Kimura, K., Synthesis and Chiroptical Study of d/l-Penicillamine-Capped Silver Nanoclusters. Chemistry of Materials 2007, 19, (11), 2831-2841.
    Li, Y.; Liu, M., Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chemical Communications 2008, (43), 5571-5573.
    Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M., Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, (5947), 1513-1515.
    Zhang, S.; Wei, H.; Bao, K.; Håkanson, U.; Halas, N. J.; Nordlander, P.; Xu, H., Chiral Surface Plasmon Polaritons on Metallic Nanowires. Physical Review Letters 2011, 107, (9), 096801.
    Osada, Y.; Kajiwara, K.; Fushimi, T.; Hirasa, O.; Hirokawa, Y.; Matsunaga, T.; Shimomura, T.; Wang, L., Gels hand book. Academic Press: San Diego, 2001; Vol. 1-4.
    Loh, X. J.; Scherman, O. A., Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to Applications. Royal Society of Chemistry: Cambridge, 2012.
    Alvarez-Lorenzo, C.; Concheiro, A., Smart Materials for Drug Delivery. Royal Society of Chemistry: Cambridge, 2013; Vol. 1.
    Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E., Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release 2014, (0).
    Lim, H. L.; Hwang, Y.; Kar, M.; Varghese, S., Smart hydrogels as functional biomimetic systems. Biomaterials Science 2014, 2, (5), 603-618.
    Islam, M. R.; Gao, Y.; Li, X.; Serpe, M. J., Responsive polymers for biosensing and protein delivery. Journal of Materials Chemistry B 2014, 2, (17), 2444-2451.
    Vashist, A.; Vashist, A.; Gupta, Y. K.; Ahmad, S., Recent advances in hydrogel based drug delivery systems for the human body. Journal of Materials Chemistry B 2014, 2, (2), 147-166.
    Diaz Diaz, D.; Kuhbeck, D.; Koopmans, R. J., Stimuli-responsive gels as reaction vessels and reusable catalysts. Chemical Society Reviews 2011, 40, (1), 427-448.
    Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A., Supramolecular polymeric hydrogels. Chemical Society Reviews 2012, 41, (18), 6195-6214.
    Loh, X. J., Supramolecular host-guest polymeric materials for biomedical applications. Materials Horizons 2014, 1, (2), 185-195.
    Chaterji, S.; Kwon, I. K.; Park, K., Smart polymeric gels: Redefining the limits of biomedical devices. Progress in Polymer Science 2007, 32, (8–9), 1083-1122.
    Jagur-Grodzinski, J., Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies 2010, 21, (1), 27-47.
    Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S., Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010, 9, (2), 101-113.
    Ottenbrite, R. M.; Park, K.; Okano, T.; (Eds.), Biomedical Applications of Hydrogels Handbook. Springer: New York, 2010.
    Hoffman, A. S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2002, 54, (1), 3-12.
    Vermonden, T.; Censi, R.; Hennink, W. E., Hydrogels for Protein Delivery. Chemical Reviews 2012, 112, (5), 2853-2888.
    Balakrishnan, B.; Banerjee, R., Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chemical Reviews 2011, 111, (8), 4453-4474.
    Li, Y.; Rodrigues, J.; Tomas, H., Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews 2012, 41, (6), 2193-2221.
    Tokarev, I.; Minko, S., Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5, (3), 511-524.
    Roy, D.; Cambre, J. N.; Sumerlin, B. S., Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science 2010, 35, (1–2), 278-301.
    Grassi, G.; Farra, R.; Caliceti, P.; Guarnieri, G.; Salmaso, S.; Carenza, M.; Grassi, M., Temperature-sensitive hydrogels. Am J Drug Deliv 2005, 3, (4), 239-251.
    Cai, S.; Suo, Z., Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids 2011, 59, (11), 2259-2278.
    Meid, J.; Lehmann, S.; Richtering, W., Temperature-Sensitive Composite Hydrogels: Coupling Between Gel Matrix and Embedded Nano- and Microgels. In Intelligent Hydrogels, Sadowski, G.; Richtering, W., Eds. Springer International Publishing: 2013; Vol. 140, pp 91-100.
    Peng, F.; Li, G.; Liu, X.; Wu, S.; Tong, Z., Redox-Responsive Gel−Sol/Sol−Gel Transition in Poly(acrylic acid) Aqueous Solution Containing Fe(III) Ions Switched by Light. Journal of the American Chemical Society 2008, 130, (48), 16166-16167.
    van de Manakker, F.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E., Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications. Biomacromolecules 2009, 10, (12), 3157-3175.
    Lee, C. T.; Smith, K. A.; Hatton, T. A., Photoreversible Viscosity Changes and Gelation in Mixtures of Hydrophobically Modified Polyelectrolytes and Photosensitive Surfactants. Macromolecules 2004, 37, (14), 5397-5405.
    Sawahata, K.; Hara, M.; Yasunaga, H.; Osada, Y., Electrically controlled drug delivery system using polyelectrolyte gels. Journal of Controlled Release 1990, 14, (3), 253-262.
    Kennedy, S.; Bencherif, S.; Norton, D.; Weinstock, L.; Mehta, M.; Mooney, D., Rapid and Extensive Collapse from Electrically Responsive Macroporous Hydrogels. Advanced Healthcare Materials 2014, 3, (4), 500-507.
    Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F., Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials 2013, 23, (6), 660-672.
    Helminger, M.; Wu, B.; Kollmann, T.; Benke, D.; Schwahn, D.; Pipich, V.; Faivre, D.; Zahn, D.; Cölfen, H., Synthesis and Characterization of Gelatin-Based Magnetic Hydrogels. Advanced Functional Materials 2014, 24, (21), 3187-3196.
    Vogt, A. P.; Sumerlin, B. S., Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 2009, 5, (12), 2347-2351.
    Ghosh, B. N.; Bhowmik, S.; Mal, P.; Rissanen, K., A highly selective, Hg2+ triggered hydrogelation: modulation of morphology by chemical stimuli. Chemical Communications 2014, 50, (6), 734-736.
    Zarzar, L. D.; Aizenberg, J., Stimuli-Responsive Chemomechanical Actuation: A Hybrid Materials Approach. Accounts of Chemical Research 2013, 47, (2), 530-539.
    Yang, Q.-S.; Ma, L.-H.; Shang, J.-J., The chemo-mechanical coupling behavior of hydrogels incorporating entanglements of polymer chains. International Journal of Solids and Structures 2013, 50, (14–15), 2437-2448.
    Iseda, K.; Kokado, K.; Sada, K., Design and function of smart polymer gels based on ion recognition. Reactive and Functional Polymers 2013, 73, (7), 951-957.
    Malachowski, K.; Breger, J.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Selaru, F. M.; Gracias, D. H., Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie 2014, n/a-n/a.
    Gupta, P.; Vermani, K.; Garg, S., Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 2002, 7, (10), 569-579.
    Tsitsilianis, C., Responsive reversible hydrogels from associative "smart" macromolecules. Soft Matter 2010, 6, (11), 2372-2388.
    Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006, 58, (15), 1655-1670.
    Singh, N. K.; Lee, D. S., In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of Controlled Release 2014, (0).
    Jaiswal, M. K.; De, M.; Chou, S. S.; Vasavada, S.; Bleher, R.; Prasad, P. V.; Bahadur, D.; Dravid, V. P., Thermoresponsive Magnetic Hydrogels as Theranostic Nanoconstructs. ACS Applied Materials & Interfaces 2014, 6, (9), 6237-6247.
    He, C.; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release 2008, 127, (3), 189-207.
    Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews 2002, 54, (1), 37-51.
    Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews 2012, 64, Supplement, (0), 270-279.
    Moeinzadeh, S.; Jabbari, E., Nanostructure Formation in Hydrogels. In Handbook of Nanomaterials Properties, Bhushan, B.; Luo, D.; Schricker, S. R.; Sigmund, W.; Zauscher, S., Eds. Springer Berlin Heidelberg: 2014; pp 285-297.
    Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z., Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials 2014, 35, (18), 4969-4985.
    Sahiner, N.; Godbey, W. T.; McPherson, G.; John, V., Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 2006, 284, (10), 1121-1129.
    Naficy, S.; Spinks, G. M.; Wallace, G. G., Thin, Tough, pH-Sensitive Hydrogel Films with Rapid Load Recovery. ACS Applied Materials & Interfaces 2014, 6, (6), 4109-4114.
    Tai, F.-I.; Sterner, O.; Andersson, O.; Ekblad, T.; Ederth, T., pH-control of the protein resistance of thin hydrogel gradient films. Soft Matter 2014.
    Nguyen, N.-T.; Liu, J.-H., Fabrication and characterization of poly(vinyl alcohol)/chitosan hydrogel thin films via UV irradiation. European Polymer Journal 2013, 49, (12), 4201-4211.
    Pena-Francesch, A.; Montero, L.; Borrós, S., Tailoring the LCST of Thermosensitive Hydrogel Thin Films Deposited by iCVD. Langmuir 2014, 30, (24), 7162-7167.
    Thiele, J.; Ma, Y.; Foschepoth, D.; Hansen, M. M. K.; Steffen, C.; Heus, H. A.; Huck, W. T. S., DNA-functionalized hydrogels for confined membrane-free in vitro transcription/translation. Lab on a Chip 2014.
    Lei, J.; Ulbricht, M., Macroinitiator-mediated photoreactive coating of membrane surfaces with antifouling hydrogel layers. Journal of Membrane Science 2014, 455, (0), 207-218.
    Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M., Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry 2011, 21, (9), 2783-2811.
    Bhattarai, N.; Gunn, J.; Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews 2010, 62, (1), 83-99.
    Croisier, F.; Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 2013, 49, (4), 780-792.
    Burdick, J. A.; Prestwich, G. D., Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced Materials 2011, 23, (12), H41-H56.
    Gumera, C.; Rauck, B.; Wang, Y., Materials for central nervous system regeneration: bioactive cues. Journal of Materials Chemistry 2011, 21, (20), 7033-7051.
    Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K., An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009, 30, (20), 3371-3377.
    Tae, G.; Kim, Y.-J.; Choi, W.-I.; Kim, M.; Stayton, P. S.; Hoffman, A. S., Formation of a Novel Heparin-Based Hydrogel in the Presence of Heparin-Binding Biomolecules. Biomacromolecules 2007, 8, (6), 1979-1986.
    Pike, D. B.; Cai, S.; Pomraning, K. R.; Firpo, M. A.; Fisher, R. J.; Shu, X. Z.; Prestwich, G. D.; Peattie, R. A., Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 2006, 27, (30), 5242-5251.
    Lu, S.; Li, B.; Ni, B.; Sun, Z.; Liu, M.; Wang, Q., Thermoresponsive injectable hydrogel for three-dimensional cell culture: chondroitin sulfate bioconjugated with poly(N-isopropylacrylamide) synthesized by RAFT polymerization. Soft Matter 2011, 7, (22), 10763-10772.
    Ossipov, D. A.; Hilborn, J., Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry”. Macromolecules 2006, 39, (5), 1709-1718.
    Mart, R. J.; Osborne, R. D.; Stevens, M. M.; Ulijn, R. V., Peptide-based stimuli-responsive biomaterials. Soft Matter 2006, 2, (10), 822-835.
    Shu, J. Y.; Panganiban, B.; Xu, T., Peptide-Polymer Conjugates: From Fundamental Science to Application. Annual Review of Physical Chemistry 2013, 64, (1), 631-657.
    Shieh, J.; Chen, S.-R.; Chen, G.-S.; Lo, C.-W.; Chen, C.-S.; Chen, B.-T.; Sun, M.-K.; Huang, C.-W.; Chen, W.-S., Acrylic acid controlled reusable temperature-sensitive hydrogel phantoms for thermal ablation therapy. Applied Thermal Engineering 2014, 62, (2), 322-329.
    Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M., Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 2009, 38, (4), 1139-1151.
    Dragan, E. S., Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal 2014, 243, (0), 572-590.
    Jayakumar, R.; Prabaharan, M.; Muzzarelli, R. A. A., Chitosan for Biomaterials II. Springer: New York, 2011.
    Ribeiro, M. P.; Espiga, A.; Silva, D.; Baptista, P.; Henriques, J.; Ferreira, C.; Silva, J. C.; Borges, J. P.; Pires, E.; Chaves, P.; Correia, I. J., Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration 2009, 17, (6), 817-824.
    Van Vlierberghe, S.; Dubruel, P.; Schacht, E., Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12, (5), 1387-1408.
    Wan Ngah, W. S.; Teong, L. C.; Hanafiah, M. A. K. M., Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 2011, 83, (4), 1446-1456.
    Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z., Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydrate Polymers 2008, 73, (3), 401-408.
    Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Gurny, R., Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57, (1), 35-52.
    Khan, F.; Tare, R. S.; Oreffo, R. O. C.; Bradley, M., Versatile Biocompatible Polymer Hydrogels: Scaffolds for Cell Growth. Angewandte Chemie International Edition 2009, 48, (5), 978-982.
    Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A., Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics 2005, 60, (2), 247-266.
    Tsuchida, E.; Abe, K., Interactions between macromolecules in solution and intermacromolecular complexes. In Interactions Between Macromolecules in Solution and Intermacromolecular Complexes, Tsuchida, E.; Abe, K., Eds. Springer Berlin Heidelberg: 1982; Vol. 45, pp 1-119.
    Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57, (1), 19-34.
    Shen, E. C.; Wang, C.; Fu, E.; Chiang, C. Y.; Chen, T. T.; Nieh, S., Tetracycline release from tripolyphosphate–chitosan cross-linked sponge: a preliminary in vitro study. Journal of Periodontal Research 2008, 43, (6), 642-648.
    Brack, H. P.; Tirmizi, S. A.; Risen Jr, W. M., A spectroscopic and viscometric study of the metal ion-induced gelation of the biopolymer chitosan. Polymer 1997, 38, (10), 2351-2362.
    Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 2012, 64, Supplement, (0), 223-236.
    Ruiz, M.; Sastre, A. M.; Guibal, E., Palladium sorption on glutaraldehyde-crosslinked chitosan. Reactive and Functional Polymers 2000, 45, (3), 155-173.
    Shu, X. Z.; Zhu, K. J.; Song, W., Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics 2001, 212, (1), 19-28.
    Muzzarelli, R. A. A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers 2009, 77, (1), 1-9.
    Varma, A. J.; Deshpande, S. V.; Kennedy, J. F., Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers 2004, 55, (1), 77-93.
    Choudhari, S. K.; Kittur, A. A.; Kulkarni, S. S.; Kariduraganavar, M. Y., Development of novel blocked diisocyanate crosslinked chitosan membranes for pervaporation separation of water–isopropanol mixtures. Journal of Membrane Science 2007, 302, (1–2), 197-206.
    Tan, H.; Chu, C. R.; Payne, K. A.; Marra, K. G., Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, (13), 2499-2506.
    Weng, L.; Chen, X.; Chen, W., Rheological Characterization of in Situ Crosslinkable Hydrogels Formulated from Oxidized Dextran and N-Carboxyethyl Chitosan. Biomacromolecules 2007, 8, (4), 1109-1115.
    Metters, A.; Hubbell, J., Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions. Biomacromolecules 2004, 6, (1), 290-301.
    Kim, M.-S.; Choi, Y.-J.; Noh, I.; Tae, G., Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Journal of Biomedical Materials Research Part A 2007, 83A, (3), 674-682.
    Zhao, L.; Mitomo, H.; Zhai, M.; Yoshii, F.; Nagasawa, N.; Kume, T., Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydrate Polymers 2003, 53, (4), 439-446.
    Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M., Photocrosslinkable chitosan as a biological adhesive. Journal of Biomedical Materials Research 2000, 49, (2), 289-295.
    Yoo, H. S., Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH). Journal of Biomaterials Science, Polymer Edition 2007, 18, (11), 1429-1441.
    Yeo, Y.; Geng, W.; Ito, T.; Kohane, D. S.; Burdick, J. A.; Radisic, M., Photocrosslinkable hydrogel for myocyte cell culture and injection. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007, 81B, (2), 312-322.
    Łukaszczyk, J.; Śmiga, M.; Jaszcz, K.; Adler, H.-J. P.; Jähne, E.; Kaczmarek, M., Evaluation of Oligo(ethylene glycol) Dimethacrylates Effects on the Properties of New Biodegradable Bone Cement Compositions. Macromolecular Bioscience 2005, 5, (1), 64-69.
    McHale, M. K.; Setton, L. A.; Chilkoti, A., Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue engineering 2005, 11, (11-12), 1768-1779.
    Jin, R.; Hiemstra, C.; Zhong, Z.; Feijen, J., Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials 2007, 28, (18), 2791-2800.
    Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; Karperien, M.; van Blitterswijk, C. A.; Zhong, Z. Y.; Feijen, J., Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, (13), 2544-2551.
    Chen, T.; Embree, H. D.; Brown, E. M.; Taylor, M. M.; Payne, G. F., Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 2003, 24, (17), 2831-2841.
    Sakai, S.; Yamada, Y.; Zenke, T.; Kawakami, K., Novel chitosan derivative soluble at neutral pH and in-situ gellable via peroxidase-catalyzed enzymatic reaction. Journal of Materials Chemistry 2009, 19, (2), 230-235.
    Augst, A. D.; Kong, H. J.; Mooney, D. J., Alginate Hydrogels as Biomaterials. Macromolecular Bioscience 2006, 6, (8), 623-633.
    Baldwin, A. D.; Kiick, K. L., Polysaccharide-modified synthetic polymeric biomaterials. Peptide Science 2010, 94, (1), 128-140.
    Eiselt, P.; Yeh, J.; Latvala, R. K.; Shea, L. D.; Mooney, D. J., Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 2000, 21, (19), 1921-1927.
    Wang, W.; Wang, A., Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers 2010, 80, (4), 1028-1036.
    Yang, S.; Liu, G.; Cheng, Y.; Zheng, Y., Electroresponsive Behavior of Sodium Alginate-g-Poly (acrylic acid) Hydrogel Under DC Electric Field. Journal of Macromolecular Science, Part A 2009, 46, (11), 1078-1082.
    Zhao, S.; Cao, M.; Li, H.; Li, L.; Xu, W., Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(ε-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydrate Research 2010, 345, (3), 425-431.
    Oh, E. J.; Park, K.; Kim, K. S.; Kim, J.; Yang, J.-A.; Kong, J.-H.; Lee, M. Y.; Hoffman, A. S.; Hahn, S. K., Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release 2010, 141, (1), 2-12.
    Horn, E. M.; Beaumont, M.; Shu, X. Z.; Harvey, A.; Prestwich, G. D.; Horn, K. M.; Gibson, A. R.; Preul, M. C.; Panitch, A., Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. Journal of Neurosurgery: Spine 2007, 6, (2), 133-140.
    Liao, E.; Yaszemski, M.; Krebsbach, P.; Hollister, S., Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly (propylene fumarate) scaffolds. Tissue engineering 2007, 13, (3), 537-550.
    Wang, T.-W.; Sun, J.-S.; Wu, H.-C.; Tsuang, Y.-H.; Wang, W.-H.; Lin, F.-H., The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 2006, 27, (33), 5689-5697.
    Fan, J.; Shang, Y.; Yuan, Y.; Yang, J., Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture. J Mater Sci: Mater Med 2010, 21, (1), 319-327.
    Wan, W.; Bannerman, A. D.; Yang, L.; Mak, H., Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. In Polymeric Cryogels, Okay, O., Ed. Springer International Publishing: 2014; Vol. 263, pp 283-321.
    Hassan, C.; Peppas, N., Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In Biopolymers • PVA Hydrogels, Anionic Polymerisation Nanocomposites, Springer Berlin Heidelberg: 2000; Vol. 153, pp 37-65.
    Gonzalez, J. S.; Alvarez, V. A., The effect of the annealing on the poly(vinyl alcohol) obtained by freezing–thawing. Thermochimica Acta 2011, 521, (1–2), 184-190.
    Fukumori, T.; Nakaoki, T., High-tensile-strength polyvinyl alcohol films prepared from freeze/thaw cycled gels. Journal of Applied Polymer Science 2014, 131, (15), n/a-n/a.
    Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F., X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques. Macromolecules 2004, 37, (5), 1921-1927.
    Takamura, A.; Ishii, F.; Hidaka, H., Drug release from poly(vinyl alcohol) gel prepared by freeze-thaw procedure. Journal of Controlled Release 1992, 20, (1), 21-27.
    Stenekes, R. J. H.; Talsma, H.; Hennink, W. E., Formation of dextran hydrogels by crystallization. Biomaterials 2001, 22, (13), 1891-1898.
    Peppas, N. A.; Berner Jr, R. E., Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1980, 1, (3), 158-162.
    Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P., FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C 2008, 28, (4), 539-548.
    Bolto, B.; Tran, T.; Hoang, M.; Xie, Z., Crosslinked poly(vinyl alcohol) membranes. Progress in Polymer Science 2009, 34, (9), 969-981.
    Bryant, S. J.; Davis-Arehart, K. A.; Luo, N.; Shoemaker, R. K.; Arthur, J. A.; Anseth, K. S., Synthesis and Characterization of Photopolymerized Multifunctional Hydrogels:  Water-Soluble Poly(Vinyl Alcohol) and Chondroitin Sulfate Macromers for Chondrocyte Encapsulation. Macromolecules 2004, 37, (18), 6726-6733.
    Martens, P.; Holland, T.; Anseth, K. S., Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2002, 43, (23), 6093-6100.
    Martens, P.; Anseth, K. S., Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2000, 41, (21), 7715-7722.
    Totani, T.; Teramura, Y.; Iwata, H., Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 2008, 29, (19), 2878-2883.
    Ruiz, J.; Mantecón, A.; Cádiz, V., Hydrogels from glycidyl derivatives of poly(vinyl alcohol). Journal of Applied Polymer Science 2003, 87, (4), 693-698.
    Baudrion, F.; Perichaud, A.; Coen, S., Chemical modification of hydroxyl functions: Introduction of hydrolyzable ester function and bactericidal quaternary ammonium groups. Journal of Applied Polymer Science 1998, 70, (13), 2657-2666.
    Breitenbach, A.; Jung, T.; Kamm, W.; Kissel, T., Biodegradable comb polyesters containing polyelectrolyte backbones facilitate the preparation of nanoparticles with defined surface structure and bioadhesive properties. Polymers for Advanced Technologies 2002, 13, (10-12), 938-950.
    Martens, P.; Blundo, J.; Nilasaroya, A.; Odell, R. A.; Cooper-White, J.; Poole-Warren, L. A., Effect of Poly(vinyl alcohol) Macromer Chemistry and Chain Interactions on Hydrogel Mechanical Properties. Chemistry of Materials 2007, 19, (10), 2641-2648.
    Waig Fang, S.; Joachim Timpe, H.; Gandini, A., Photocrosslinkable polymers bearing pendant conjugated heterocyclic chromophores. Polymer 2002, 43, (12), 3505-3510.
    Schmedlen, R. H.; Masters, K. S.; West, J. L., Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002, 23, (22), 4325-4332.
    Rosiak, J. M.; Ulański, P., Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry 1999, 55, (2), 139-151.
    Tomatsu, I.; Peng, K.; Kros, A., Photoresponsive hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2011, 63, (14–15), 1257-1266.
    Ilčin, M.; Holá, O.; Bakajová, B.; Kučerík, J., FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends. Journal of Radioanalytical and Nuclear Chemistry 2010, 283, (1), 9-13.
    Gestos, A.; Whitten, P. G.; Spinks, G. M.; Wallace, G. G., Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation. Soft Matter 2010, 6, (5), 1045-1052.
    Lebedeva, N. V.; Forbes, M. D. E., Time-Resolved EPR Studies of Main-Chain Radicals from Acrylic Polymers. Poly(acrylic acid)s. Macromolecules 2008, 41, (4), 1334-1340.
    Abd El-Rehim, H. A.; Hegazy, E.-S. A.; Diaa, D. A., Photo-catalytic degradation of Metanil Yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. Reactive and Functional Polymers 2012, 72, (11), 823-831.
    von Sonntag, C., Free-radical-induced chain scission and cross-linking of polymers in aqueous solution—an overview. Radiation Physics and Chemistry 2003, 67, (3–4), 353-359.
    Rosiak, J. M.; Ulański, P.; Pajewski, L. A.; Yoshii, F.; Makuuchi, K., Radiation formation of hydrogels for biomedical purposes. Some remarks and comments. Radiation Physics and Chemistry 1995, 46, (2), 161-168.
    Lebedeva, N. V.; Gorelik, E. V.; Prowatzke, A. M.; Forbes, M. D. E., Model Systems for Poly(Acrylic Acid) Main-Chain Radicals Based on the Kemp’s Triacid Framework. The Journal of Physical Chemistry B 2008, 112, (25), 7574-7580.
    Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Vicini, S.; Marsano, E., The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polymer Degradation and Stability 2005, 88, (2), 261-267.
    Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2012, 64, (0), 49-60.
    Zhao, Y.; Kang, J.; Tan, T., Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 2006, 47, (22), 7702-7710.
    Gao, X.; He, C.; Xiao, C.; Zhuang, X.; Chen, X., Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 2013, 54, (7), 1786-1793.
    Gao, X.; Cao, Y.; Song, X.; Zhang, Z.; Zhuang, X.; He, C.; Chen, X., Biodegradable, pH-Responsive Carboxymethyl Cellulose/Poly(Acrylic Acid) Hydrogels for Oral Insulin Delivery. Macromolecular Bioscience 2014, 14, (4), 565-575.
    Katono, H.; Maruyama, A.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y., Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid). Journal of Controlled Release 1991, 16, (1–2), 215-227.
    Liu, J.; Wang, W.; Wang, A., Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polymers for Advanced Technologies 2011, 22, (5), 627-634.
    Qin-Yuan, Z.; Zu-Yong, W.; Jing, L.; Jun, L.; Feng, W.; Swee Hin, T. In Tailoring of poly(vinyl alcohol) hydrogels properties by incorporation of crosslinked acrylic acid, Defense Science Research Conference and Expo (DSR), 2011, 3-5 Aug. 2011, 2011; 2011; pp 1-3.
    Huang, Y.; Yu, H.; Xiao, C., pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: Swelling and in vitro drug release. Carbohydrate Polymers 2007, 69, (4), 774-783.
    Mohd Amin, M. C. I.; Ahmad, N.; Halib, N.; Ahmad, I., Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 2012, 88, (2), 465-473.
    Lo, Y.-L.; Hsu, C.-Y.; Lin, H.-R., pH-and thermo-sensitive pluronic/poly(acrylic acid) in situ hydrogels for sustained release of an anticancer drug. Journal of Drug Targeting 2013, 21, (1), 54-66.
    Elliott, J. E.; Macdonald, M.; Nie, J.; Bowman, C. N., Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 2004, 45, (5), 1503-1510.
    Choi, J.; Kung, H. J.; Macias, C. E.; Muratoglu, O. K., Highly lubricious poly(vinyl alcohol)–poly(acrylic acid) hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100B, (2), 524-532.
    White, E. M.; Yatvin, J.; Grubbs, J. B.; Bilbrey, J. A.; Locklin, J., Advances in smart materials: Stimuli-responsive hydrogel thin films. Journal of Polymer Science Part B: Polymer Physics 2013, 51, (14), 1084-1099.
    Tokarev, I.; Minko, S., Stimuli-Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes. Advanced Materials 2010, 22, (31), 3446-3462.
    South, A. B.; Lyon, L. A., Autonomic Self-Healing of Hydrogel Thin Films. Angewandte Chemie 2010, 122, (4), 779-783.
    Froimowicz, P.; Klinger, D.; Landfester, K., Photoreactive Nanoparticles as Nanometric Building Blocks for the Generation of Self-Healing Hydrogel Thin Films. Chemistry – A European Journal 2011, 17, (44), 12465-12475.
    Bäcker, M.; Raue, M.; Schusser, S.; Jeitner, C.; Breuer, L.; Wagner, P.; Poghossian, A.; Förster, A.; Mang, T.; Schöning, M. J., Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films. physica status solidi (a) 2012, 209, (5), 839-845.
    Suraniti, E.; Vivès, S.; Tsujimura, S.; Mano, N., Designing thin films of redox hydrogel for highly efficient enzymatic anodes. Journal of The Electrochemical Society 2013, 160, (6), G79-G82.
    Hegewald, J.; Schmidt, T.; Gohs, U.; Günther, M.; Reichelt, R.; Stiller, B.; Arndt, K.-F., Electron Beam Irradiation of Poly(Vinyl Methyl Ether) Films:  1. Synthesis and Film Topography. Langmuir 2005, 21, (13), 6073-6080.
    Tirumala, V. R.; Divan, R.; Ocola, L. E.; Mancini, D. C., Direct-write e-beam patterning of stimuli-responsive hydrogel nanostructures. Journal of Vacuum Science & Technology B 2005, 23, (6), 3124-3128.
    Schmidt, T.; Mönch, J. I.; Arndt, K.-F., Temperature-Sensitive Hydrogel Pattern by Electron-Beam Lithography. Macromolecular Materials and Engineering 2006, 291, (7), 755-761.
    Gottlieb, R.; Kaiser, C.; Gohs, U.; Arndt, K.-F., Temperature Sensitive Hydrogels Based on Hydroxypropylcellulose by High Energy Irradiation. Macromolecular Symposia 2007, 254, (1), 361-369.
    Harnish, B.; Robinson, J. T.; Pei, Z.; Ramström, O.; Yan, M., UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces. Chemistry of Materials 2005, 17, (16), 4092-4096.
    Tamirisa, P. A.; Hess, D. W., Water and Moisture Uptake by Plasma Polymerized Thermoresponsive Hydrogel Films. Macromolecules 2006, 39, (20), 7092-7097.
    Bullett, N. A.; Talib, R. A.; Short, R. D.; McArthur, S. L.; Shard, A. G., Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-isopropyl acrylamide. Surface and Interface Analysis 2006, 38, (7), 1109-1116. Förch, R.; Chifen, A. N.; Bousquet, A.; Khor, H. L.; Jungblut, M.; Chu, L. Q.; Zhang, Z.; Osey-Mensah, I.; Sinner, E. K.; Knoll, W., Recent and Expected Roles of Plasma-Polymerized Films for Biomedical Applications. Chemical Vapor Deposition 2007, 13, (6-7), 280-294.
    Matsukuma, D.; Yamamoto, K.; Aoyagi, T., Stimuli-Responsive Properties of N-Isopropylacrylamide-Based Ultrathin Hydrogel Films Prepared by Photo-Cross-Linking. Langmuir 2006, 22, (13), 5911-5915.
    Kuckling, D.; Harmon, M. E.; Frank, C. W., Photo-Cross-Linkable PNIPAAm Copolymers. 1. Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers. Macromolecules 2002, 35, (16), 6377-6383.
    Guenther, M.; Kuckling, D.; Corten, C.; Gerlach, G.; Sorber, J.; Suchaneck, G.; Arndt, K. F., Chemical sensors based on multiresponsive block copolymer hydrogels. Sensors and Actuators B: Chemical 2007, 126, (1), 97-106.
    Liu, H.; Ito, Y., Gradient micropattern immobilization of a thermo-responsive polymer to investigate its effect on cell behavior. Journal of Biomedical Materials Research Part A 2003, 67A, (4), 1424-1429.
    Aussenegg, F. R.; Brunner, H.; Leitner, A.; Lobmaier, C.; Schalkhammer, T.; Pittner, F., The metal island coated swelling polymer over mirror system (MICSPOMS): a new principle for measuring ionic strength. Sensors and Actuators B: Chemical 1995, 29, (1–3), 204-209.
    Schmaljohann, D.; Beyerlein, D.; Nitschke, M.; Werner, C., Thermo-Reversible Swelling of Thin Hydrogel Films Immobilized by Low-Pressure Plasma. Langmuir 2004, 20, (23), 10107-10114.
    Chen, K.-S.; Liao, S.-C.; Lin, S.-W.; Tsao, S.-H.; Ting, T. H.; Inagaki, N.; Wu, H.-M.; Chen, W.-Y., The film deposition via atmospheric pressure plasma from ethanol and He mixing gases. Surface and Coatings Technology 2013, 231, (0), 408-411.
    Bhattacharyya, D.; Pillai, K.; Chyan, O. M. R.; Tang, L.; Timmons, R. B., A New Class of Thin Film Hydrogels Produced by Plasma Polymerization. Chemistry of Materials 2007, 19, (9), 2222-2228.
    Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U., Thin hydrogel films for optical biosensor applications. Membranes 2012, 2, (1), 40-69.
    Sorber, J.; Steiner, G.; Schulz, V.; Guenther, M.; Gerlach, G.; Salzer, R.; Arndt, K.-F., Hydrogel-Based Piezoresistive pH Sensors:  Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging. Analytical Chemistry 2008, 80, (8), 2957-2962.
    Liu, J.-H.; Fang, H.; Chien, C.-C., Solvent-tunable colors in imprinted helical structures on polymer template via multiple UV-induced polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, (5), 1256-1262.
    Chien, C.-C.; Liu, J.-H., Optical Behaviors of Flexible Photonic Films via the Developed Multiple UV-Exposed Fabrications. Macromolecular Rapid Communications 2014, 35, (13), 1185-1190.
    Harmon, M. E.; Jakob, T. A. M.; Knoll, W.; Frank, C. W., A Surface Plasmon Resonance Study of Volume Phase Transitions in N-Isopropylacrylamide Gel Films. Macromolecules 2002, 35, (15), 5999-6004.
    Bhatta, D.; Christie, G.; Madrigal-González, B.; Blyth, J.; Lowe, C. R., Holographic sensors for the detection of bacterial spores. Biosensors and Bioelectronics 2007, 23, (4), 520-527.
    Liang, L.; Feng, X.; Peurrung, L.; Viswanathan, V., Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science 1999, 162, (1–2), 235-246.
    Wang, X.; Bohn, P. W., Anisotropic In-Plane Gradients of Poly(acrylic acid) Formed by Electropolymerization with Spatiotemporal Control of the Electrochemical Potential. Journal of the American Chemical Society 2004, 126, (21), 6825-6832.
    Reuber, J.; Reinhardt, H.; Johannsmann, D., Formation of Surface-Attached Responsive Gel Layers via Electrochemically Induced Free-Radical Polymerization. Langmuir 2006, 22, (7), 3362-3367.
    Li, Y.; Wang, X.; Sun, J., Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chemical Society Reviews 2012, 41, (18), 5998-6009.
    Ariga, K.; McShane, M.; Lvov, Y. M.; Ji, Q.; Hill, J. P., Layer-by-layer assembly for drug delivery and related applications. Expert Opinion on Drug Delivery 2011, 8, (5), 633-644.
    Gu, R.; Yuan, X.; Wu, R.; Li, H.; Xu, S.; Wang, J., Layer-by-layer assembled hydrogel nanocomposite film with a high loading capacity. Journal of Applied Polymer Science 2014, 131, (2), n/a-n/a.
    Lee, H.; Mensire, R.; Cohen, R. E.; Rubner, M. F., Strategies for Hydrogen Bonding Based Layer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids. Macromolecules 2011, 45, (1), 347-355.
    Wang, Z.; Zhang, X.; Gu, J.; Yang, H.; Nie, J.; Ma, G., Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydrate Polymers 2014, 103, (0), 38-45.
    Sukhishvili, S. A., Responsive polymer films and capsules via layer-by-layer assembly. Current Opinion in Colloid & Interface Science 2005, 10, (1–2), 37-44.
    Lee, D.; Nolte, A. J.; Kunz, A. L.; Rubner, M. F.; Cohen, R. E., pH-Induced Hysteretic Gating of Track-Etched Polycarbonate Membranes:  Swelling/Deswelling Behavior of Polyelectrolyte Multilayers in Confined Geometry. Journal of the American Chemical Society 2006, 128, (26), 8521-8529.
    Dubas, S. T.; Schlenoff, J. B., Polyelectrolyte Multilayers Containing a Weak Polyacid:  Construction and Deconstruction. Macromolecules 2001, 34, (11), 3736-3740.
    Kang, E.-H.; Liu, X.; Sun, J.; Shen, J., Robust Ion-Permselective Multilayer Films Prepared by Photolysis of Polyelectrolyte Multilayers Containing Photo-Cross-Linkable and Photolabile Groups. Langmuir 2006, 22, (18), 7894-7901.
    Dai, J.; Jensen, A. W.; Mohanty, D. K.; Erndt, J.; Bruening, M. L., Controlling the Permeability of Multilayered Polyelectrolyte Films through Derivatization, Cross-Linking, and Hydrolysis. Langmuir 2001, 17, (3), 931-937.
    Such, G. K.; Johnston, A. P. R.; Caruso, F., Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews 2011, 40, (1), 19-29.
    Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E., Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release 2014, (0).
    Jagur-Grodzinski, J., Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies 2010, 21, (1), 27-47.
    Ottenbrite, R. M.; Park, K.; Okano, T.; (Eds.), Biomedical Applications of Hydrogels Handbook. Springer: New York, 2010.
    Toh, W. S.; Loh, X. J., Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C 2014, (0).
    Oyen, M. L., Mechanical characterisation of hydrogel materials. International Materials Reviews 2014, 59, (1), 44-59.
    Saxena, S.; Hansen, C. E.; Lyon, L. A., Microgel Mechanics in Biomaterial Design. Accounts of Chemical Research 2014.
    Schwall, C.; Banerjee, I., Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering. Materials 2009, 2, (2), 577-612.
    Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D., A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100B, (5), 1451-1457.
    Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2012, 64, (0), 49-60.
    Jayakumar, R.; Prabaharan, M.; Muzzarelli, R. A. A., Chitosan for Biomaterials II. Springer: New York, 2011.
    Croisier, F.; Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 2013, 49, (4), 780-792.
    Samchenko, Y.; Ulberg, Z.; Korotych, O., Multipurpose smart hydrogel systems. Advances in Colloid and Interface Science 2011, 168, (1–2), 247-262.
    Tokarev, I.; Minko, S., Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5, (3), 511-524.
    Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z., Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydrate Polymers 2008, 73, (3), 401-408.
    Eid, M.; Hegazy, D., Electron Beam Synthesis and Characterization of Poly Vinyl Alcohol/Poly Acrylic Acid Embedded Ni and Ag Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials 2012, 22, (5), 985-997.
    Shim, J.-W.; Nho, Y.-C., Preparation of poly(acrylic acid)–chitosan hydrogels by gamma irradiation and in vitro drug release. Journal of Applied Polymer Science 2003, 90, (13), 3660-3667.
    Lee, Y. M.; Kim, S. H.; Cho, C. S., Synthesis and swelling characteristics of pH and thermoresponsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and poly(acrylic acid). Journal of Applied Polymer Science 1996, 62, (2), 301-311.
    Lee, J. W.; Kim, S. Y.; Kim, S. S.; Lee, Y. M.; Lee, K. H.; Kim, S. J., Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). Journal of Applied Polymer Science 1999, 73, (1), 113-120.
    Gestos, A.; Whitten, P. G.; Spinks, G. M.; Wallace, G. G., Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation. Soft Matter 2010, 6, (5), 1045-1052.
    Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57, (1), 19-34.
    Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K., Gelation Process and Phase Separation of PVA Solutions As Studied by a Light Scattering Technique. Macromolecules 1999, 32, (23), 7815-7819.
    Gohil, J. M.; Bhattacharya, A.; Ray, P., Studies On The Crosslinking Of Poly (Vinyl Alcohol). Journal of Polymer Research 2006, 13, (2), 161-169.
    Liu, J.; Wang, W.; Wang, A., Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polymers for Advanced Technologies 2011, 22, (5), 627-634.
    Qu, X.; Wirsén, A.; Albertsson, A.-C., Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. Journal of Applied Polymer Science 1999, 74, (13), 3193-3202.
    Bellamy, L. J., Infrared spectra of complex molecules. Chapman and Hall, London 1980, 299.
    Yang, J. M.; Wang, H. Z.; Yang, C. C., Modification and characterization of semi-crystalline poly(vinyl alcohol) with interpenetrating poly(acrylic acid) by UV radiation method for alkaline solid polymer electrolytes membrane. Journal of Membrane Science 2008, 322, (1), 74-80.
    Kim, J. H.; Kim, J. Y.; Lee, Y. M.; Kim, K. Y., Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane. Journal of Applied Polymer Science 1992, 45, (10), 1711-1717.
    Yang, J. M.; Su, W. Y.; Leu, T. L.; Yang, M. C., Evaluation of chitosan/PVA blended hydrogel membranes. Journal of Membrane Science 2004, 236, (1–2), 39-51.
    Neto, C. G. T.; Giacometti, J. A.; Job, A. E.; Ferreira, F. C.; Fonseca, J. L. C.; Pereira, M. R., Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers 2005, 62, (2), 97-103.
    de Britto, D.; Campana-Filho, S. P., Kinetics of the thermal degradation of chitosan. Thermochimica Acta 2007, 465, (1–2), 73-82.
    Wanjun, T.; Cunxin, W.; Donghua, C., Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability 2005, 87, (3), 389-394.
    Holland, B. J.; Hay, J. N., The thermal degradation of poly(vinyl alcohol). Polymer 2001, 42, (16), 6775-6783.
    Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Vicini, S.; Marsano, E., The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polymer Degradation and Stability 2005, 88, (2), 261-267.
    Sionkowska, A.; Kaczmarek, H.; Wisniewski, M.; Skopinska, J.; Lazare, S.; Tokarev, V., The influence of UV irradiation on the surface of chitosan films. Surface Science 2006, 600, (18), 3775-3779.
    Wasikiewicz, J. M.; Yoshii, F.; Nagasawa, N.; Wach, R. A.; Mitomo, H., Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry 2005, 73, (5), 287-295.
    McCaffrey, V. P.; Harbron, E. J.; Forbes, M. D. E., Time-Resolved EPR Studies of Main Chain Radicals from Acrylic Polymers. Dynamic Effects Due to Conformational Motion. Macromolecules 2005, 38, (8), 3342-3350.
    Sionkowska, A.; Płanecka, A.; Kozłowska, J.; Skopińska-Wiśniewska, J., Photochemical stability of poly(vinyl alcohol) in the presence of collagen. Polymer Degradation and Stability 2009, 94, (3), 383-388.
    Vijayalakshmi, S. P.; Madras, G., Photodegradation of poly(vinyl alcohol) under UV and pulsed-laser irradiation in aqueous solution. Journal of Applied Polymer Science 2006, 102, (2), 958-966.
    Fogler, H. S., Elements of Chemical Reaction Engineering 4ed.; Prentice Hall: New York, 2005; p 1080.
    Odian, G., Principles of Polymerization. 4 ed.; John Wiley & Sons: Hoboken, New Jersey, 2004.
    Rodrigues, F. A.; Fajardo, A.; Pereira, A. B.; Ricardo, N. P. S.; Feitosa, J. A.; Muniz, E., Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization. Journal of Polymer Research 2012, 19, (12), 1-10.
    Khare, A. R.; Peppas, N. A., Swelling/deswelling of anionic copolymer gels. Biomaterials 1995, 16, (7), 559-567.
    Harland, R. S.; Prud'homme, R. K., Polyelectrolyte Gels: Properties, Preparation, and Applications. American Chemical Society: 1992; p 332.
    Katime, I.; Velada, J. L.; Novoa, R.; de Apodaca, E. D.; Puig, J.; Mendizabal, E., Swelling kinetics of poly(acrylamide)/poly(mono-n-alkyl itaconates) hydrogels. Polymer International 1996, 40, (4), 281-286.
    Wang, C.; Li, Y.; Hu, Z., Swelling Kinetics of Polymer Gels. Macromolecules 1997, 30, (16), 4727-4732.
    Miranda, L. F.; Lugão, A. B.; Machado, L. D. B.; Ramanathan, L. V., Crosslinking and degradation of PVP hydrogels as a function of dose and PVP concentration. Radiation Physics and Chemistry 1999, 55, (5–6), 709-712.
    Eiselt, P.; Yeh, J.; Latvala, R. K.; Shea, L. D.; Mooney, D. J., Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 2000, 21, (19), 1921-1927.
    Srinivasan, R.; Braren, B.; Seeger, D. E.; Dreyfus, R. W., Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 nm and 248 nm. Macromolecules 1986, 19, (3), 916-921.
    Teare, D. O. H.; Ton-That, C.; Bradley, R. H., Surface characterization and ageing of ultraviolet–ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy. Surface and Interface Analysis 2000, 29, (4), 276-283.
    Lee, J. H.; Prud'homme, R. K.; Aksay, I. A., Cure depth in photopolymerization: Experiments and theory. Journal of Materials Research 2001, 16, 3536-3544.
    Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A., Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering 2014, 111, (3), 441-453.
    Tseng, C.-C.; Lin, Y.-H.; Shu, Y.-Y.; Chen, C.-J.; Ger, M.-D., Synthesis of vinyl acetate/Pd nanocomposites as activator ink for ink-jet printing technology and electroless copper plating. Journal of the Taiwan Institute of Chemical Engineers 2011, 42, (6), 989-995.
    Kao, Z.-K.; Chen, S.-P.; Lin, J.-L.; Liao, Y.-C., Low temperature synthesis of conductive silver tracks with polymer addition. Journal of the Taiwan Institute of Chemical Engineers 2012, 43, (6), 965-970.
    El-Mahdy, G. A.; Atta, A. M.; Al-Lohedan, H. A., Synthesis and characterizations of Fe3O4 nanogel composite for enhancement of the corrosion resistance of steel in HCl solutions. Journal of the Taiwan Institute of Chemical Engineers, (0).
    Otari, S. V.; Patil, R. M.; Waghmare, S. R.; Ghosh, S. J.; Pawar, S. H., A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity. Dalton Transactions 2013, 42, (27), 9966-9975.
    You, J.; Zhao, C.; Cao, J.; Zhou, J.; Zhang, L., Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. Journal of Materials Chemistry A 2014.
    Liu, J.-H.; Wu, D.-S.; Tseng, K.-Y., Fabrication and Characterization of GRIN Plastic Rods Containing Silver Nanoparticles with Novel Surfmers. Macromolecular Chemistry and Physics 2004, 205, (16), 2205-2213.
    Bai, W.; Nie, F.; Zheng, J.; Sheng, Q., A Novel Silver Nanoparticles-Manganese Oxyhydroxide- Graphene Oxide Nanocomposite Prepared by Modified Silver Mirror Reaction and Its Application for Electrochemical Sensing. ACS Applied Materials & Interfaces 2014.
    Cao, X. L.; Cheng, C.; Ma, Y. L.; Zhao, C. S., Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J Mater Sci: Mater Med 2010, 21, (10), 2861-2868.
    Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S., In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymers 2014, 102, (0), 762-771.
    Prabhu, S.; Poulose, E., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012, 2, (1), 1-10.
    Fuku, K.; Hayashi, R.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H., The Synthesis of Size- and Color-Controlled Silver Nanoparticles by Using Microwave Heating and their Enhanced Catalytic Activity by Localized Surface Plasmon Resonance. Angewandte Chemie International Edition 2013, 52, (29), 7446-7450.
    Liu, J.-H.; Hsieh, F.-M., Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature. Polymer Composites 2010, 31, (8), 1352-1359.
    Voronov, A.; Kohut, A.; Peukert, W., Synthesis of Amphiphilic Silver Nanoparticles in Nanoreactors from Invertible Polyester. Langmuir 2006, 23, (2), 360-363.
    Zhang, J.; Xu, S.; Kumacheva, E., Polymer Microgels:  Reactors for Semiconductor, Metal, and Magnetic Nanoparticles. Journal of the American Chemical Society 2004, 126, (25), 7908-7914.
    Xu, W.; Jin, W.; Lin, L.; Zhang, C.; Li, Z.; Li, Y.; Song, R.; Li, B., Green synthesis of xanthan conformation-based silver nanoparticles: Antibacterial and catalytic application. Carbohydrate Polymers 2014, 101, (0), 961-967.
    Lu, Y.-C.; Chou, K.-S., A simple and effective route for the synthesis of nano-silver colloidal dispersions. Journal of the Chinese Institute of Chemical Engineers 2008, 39, (6), 673-678.
    Murali Mohan, Y.; Lee, K.; Premkumar, T.; Geckeler, K. E., Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer 2007, 48, (1), 158-164.
    Eid, M.; El-Arnaouty, M. B.; Salah, M.; Soliman, E.-S.; Hegazy, E.-S., Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res 2012, 19, (3), 1-10.
    Zan, X.; Kozlov, M.; McCarthy, T. J.; Su, Z., Covalently Attached, Silver-Doped Poly(vinyl alcohol) Hydrogel Films on Poly(l-lactic acid). Biomacromolecules 2010, 11, (4), 1082-1088.
    Jagur-Grodzinski, J., Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies 2010, 21, (1), 27-47.
    Lee, H. K.; Jeong, E. H.; Baek, C. K.; Youk, J. H., One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Materials Letters 2005, 59, (23), 2977-2980.
    V. Goia, D.; Matijevic, E., Preparation of monodispersed metal particles. New Journal of Chemistry 1998, 22, (11), 1203-1215.
    Raveendran, P.; Fu, J.; Wallen, S. L., Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. Journal of the American Chemical Society 2003, 125, (46), 13940-13941.
    Mohan, S.; Oluwafemi, O. S.; George, S. C.; Jayachandran, V. P.; Lewu, F. B.; Songca, S. P.; Kalarikkal, N.; Thomas, S., Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers 2014, (0).
    Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H., One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. Journal of Hazardous Materials 2013, 248–249, (0), 394-400.
    Bi, L.; Pan, G., Facile and green fabrication of multiple magnetite nano-cores@void@porous shell microspheres for delivery vehicles. Journal of Materials Chemistry A 2014, 2, (11), 3715-3718.
    Joshi, M. K.; Pant, H. R.; Kim, H. J.; Kim, J. H.; Kim, C. S., One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 446, (0), 102-108.
    Yu, H.; Xu, X.; Chen, X.; Lu, T.; Zhang, P.; Jing, X., Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. Journal of Applied Polymer Science 2007, 103, (1), 125-133.
    Murali Mohan, Y.; Vimala, K.; Thomas, V.; Varaprasad, K.; Sreedhar, B.; Bajpai, S. K.; Mohana Raju, K., Controlling of silver nanoparticles structure by hydrogel networks. Journal of Colloid and Interface Science 2010, 342, (1), 73-82.
    Nguyen, N.-T.; Liu, J.-H., Fabrication and characterization of poly(vinyl alcohol)/chitosan hydrogel thin films via UV irradiation. European Polymer Journal 2013, 49, (12), 4201-4211.
    Niknam Jahromi, M. J.; Liu, J.-H., Gel effects on the fabrication of gradient refractive index plastic rods via energy-controlled polymerization. Journal of the Taiwan Institute of Chemical Engineers 2012, 43, (2), 301-305.
    Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, (3), 788-800.
    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2002, 107, (3), 668-677.
    Mostafavi, M.; Keghouche, N.; Delcourt, M.-O., Complexation of silver clusters of a few atoms by a polyanion in aqueous solution: pH effect correlated to structural changes. Chemical Physics Letters 1990, 169, (1–2), 81-84.
    Abdelgawad, A. M.; Hudson, S. M.; Rojas, O. J., Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers 2014, 100, (0), 166-178.
    Liu, J.-H.; Tsai, C.-Y.; Chiu, Y.-H.; Hsieh, F.-M., The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature. Nanotechnology 2009, 20, (3), 035301.
    Oyen, M. L., Mechanical characterisation of hydrogel materials. International Materials Reviews 2014, 59, (1), 44-59.

    下載圖示 校內:2020-04-03公開
    校外:2020-04-03公開
    QR CODE