簡易檢索 / 詳目顯示

研究生: 許昇豪
Hsu, Sheng-Hao
論文名稱: 氧化鋅界面修飾於高性能鈣鈦礦太陽能電池之研究
Interfacial Modification of ZnO toward High Performance Perovskite Solar Cell
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 鈣鈦礦太陽能電池氧化鋅界面修飾層熱穩定性
外文關鍵詞: perovskite solar cell, ZnO, interfacial modification, thermal stability
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以氧化鋅之界面修飾提升鈣鈦礦太陽能電池之元件效率、熱穩定性與降低遲滯效應,藉由高分子界面修飾與自組裝單分子層的方法,鈍化氧化鋅上之缺陷,提升氧化鋅界面與鈣鈦礦間之親和性,得到更加平整、連續且沒有孔洞之薄膜。
    第一部分,透過濃度0.05 wt%分子量10k之 PVP修飾於氧化鋅,能夠得到最平整且均勻的薄膜,利用其製備鈣鈦礦太陽能電池,能得到均勻且緻密的薄膜,其元件特性在正向偏壓下掃描,得到平均PCE為11.86%,與反向偏壓下掃描,得到平均PCE為14.12%。並且能夠降低元件之遲滯效應與提升元件之熱穩定性。
    第二部分,選用適合的溶劑,透過簡單的溶液旋塗製程,將氧化鋅表面能夠自組裝密度夠高的單分子層,使在製備鈣鈦礦層時有最均勻與緻密的薄膜,大幅提升元件效率,其平均反掃之平均PCE為13.93%,正掃之PCE平均為12.09%,遲滯指數為0.116,有著更不明顯的遲滯效應,並且大幅提升元件之熱穩定性。經90℃、10分鐘的熱處理後,提高鈣鈦礦之結晶度,並且沒有碘化鉛的產生,提升熱穩定性。

    This work reports a study on using interfacial modification of ZnO toward high performance perovskite solar cell. There were two methods of interfacial modification, polymer interlayer and self-assembly monolayer on ZnO. First, using PVP to modify on the ZnO surface could get a uniform thin film. The modified ZnO film made perovskite be a uniform and pin-holes free by providing better wettability and adhesion with perovskite. With the structure, the average PCE of device under forward scanning and reverse scanning are 11.86% and 14.12%, respectively. PVP could also improve the device thermal stability by separating ZnO from direct contact with perovskite layer. Second, using para-aminobenzoic acid (PABA) in appropriate solvent through solution spin-coating process on ZnO could self-assembly a dense monolayer on ZnO. The MAPbI3 layer were uniform and dense due to better wettability providing by the amino group of PABA. With the structure, the average PCE of device under forward scanning and reverse scanning are 12.09 % and 13.96 %, respectively. The hysteresis effect is significantly decreased by passivating the defect on the ZnO through PABA SAM. The less hydroxide group on ZnO could also increase device thermal stability.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XVII 符號與縮寫 XVIII 第一章 緒論 1 1.1 有機/無機混和鈣鈦礦太陽能電池簡介 1 1.1.1 鈣鈦礦太陽能電池之簡介 1 1.1.2 太陽能電池之工作原理 2 1.1.3 鈣鈦礦太陽能電池之結構發展 6 1.1.4 鈣鈦礦太陽能電池之遲滯效應 8 1.2 氧化鋅界面修飾之文獻回顧 11 1.2.1 氧化鋅之簡介 11 1.2.2 氧化鋅溶液製程回顧 12 1.2.3 MAPbI3沉積在氧化鋅基材上之文獻回顧 14 1.2.4 MAPbI3與氧化鋅間之分解反應 14 1.2.5 高分子界面修飾於氧化鋅 16 1.2.6自組裝單分子層於氧化鋅之界面修飾 19 1.3 研究動機 21 第二章 聚乙烯吡咯烷酮修飾於氧化鋅上之應用 23 2.1 前言 23 2.2 實驗部分 23 2.2.1 藥品與材料來源 23 2.2.2 元件組裝與特性量測 24 2.2.3 二維表面粗度儀之量測 30 2.2.4 原子力顯微鏡之量測 30 2.2.5 掃描式電子顯微鏡量測 30 2.2.6 X-ray繞射圖譜之量測 31 2.3 實驗結果與討論 32 2.3.1 不同分子量的聚乙烯吡咯烷酮對於元件特性之影響 32 2.3.2 不同濃度的聚乙烯吡咯烷酮對於元件特性之影響 37 2.3.3 聚乙烯亞胺之氧化鋅修飾 44 2.3.4 聚乙烯吡咯烷酮修飾於氧化鋅層之熱穩定性討論 47 2.3.5 結論 51 第三章 對胺基苯甲酸單分子自組裝於氧化鋅之應用 53 3.1 前言 53 3.2 實驗部分 54 3.2.1 藥品與材料來源 54 3.2.2 元件組裝與特性量測 55 3.2.3二維表面粗度儀之量測 56 3.2.4掃描式電子顯微鏡量測 57 3.2.5 X-ray繞射圖譜之量測 57 3.2.6 影像式接觸角量測儀之量測 57 3.2.7 PL之量測 58 3.3 實驗結果與討論 59 3.3.1 單分子層自組裝對於元件特性之影響 59 3.3.2 單分子層自組裝對於元件熱穩定性之影響 70 3.3.3 結論 76 第四章 總結與建議 77 4.1 總結 77 4.2 未來發展與建議 78 參考文獻 79

    1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
    2. NREL chart, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (accessed 04.20.2016, 2016).
    3. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel, Energy Environ. Sci.,, 2016, 9, 1989-1997.
    4. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida and N. Miura, Solid State Commun., 2003, 127, 619-623.
    5. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida and N. Miura, Physica B: Condensed Matter, 1994, 201, 427-430.
    6. D. S. Hamilton, R. S. Meltzer, M. D. Sturge and T. Ishihara, J. Lumin., 1994, 60, 269-274.
    7. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn and P. Meredith, Nat. Photon., 2015, 9, 106-112.
    8. W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei and G. Yang, Nat. commun., 2015, 6, 6700.
    9. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel and S. I. Seok, Nat. Photon., 2013, 7, 486-491.
    10. B. Qi and J. Wang, PCCP, 2013, 15, 8972-8982.
    11. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Scientific reports, 2012, 2, 591.
    12. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 2014, 13, 897-903.
    13. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park, J. Am. Chem. Soc., 2015, 137, 8696-8699.
    14. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
    15. X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han and M. Gratzel, Nature chemistry, 2015, 7, 703-711.
    16. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Adv. Mater., 2013, 25, 3727-3732.
    17. C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel and M. K. Nazeeruddin, Energy Environ. Sci.,, 2015, 8, 3550-3556.
    18. H. Kim, K.-G. Lim and T.-W. Lee, Energy Environ. Sci., 2016, 9, 12-30.
    19. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, Energy Environ. Sci., 2015, 8, 1602-1608.
    20. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, Energy Environ. Sci., 2015, 8, 995-1004.
    21. Y. Zhang, M. Liu, G. E. Eperon, T. C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L. M. Herz, M. B. Johnston, H. Lin and H. J. Snaith, Mater. Horiz., 2015, 2, 315-322.
    22. M. Kamalasanan and S. Chandra, Thin Solid Films, 1996, 288, 112-115.
    23. M. White, D. Olson, S. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
    24. Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li and G. Cao, Adv. Funct. Mater., 2012, 22, 2194-2201.
    25. T. Kuwabara, Y. Kawahara, T. Yamaguchi and K. Takahashi, ACS Appl. Mater. Interfaces, 2009, 1, 2107-2110.
    26. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. Ngongang Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, J. Mater. Chem. A, 2014, 2, 13321.
    27. X. Yu, X. Yu, J. Zhang, G. Zhao, J. Ni, H. Cai and Y. Zhao, Sol. Energy Mater. Sol. Cells, 2014, 128, 307-312.
    28. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. N. Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, J. Mater. Chem. A, 2014, 2, 13321-13331.
    29. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Appl. Phys. Lett., 2008, 93, 221107.
    30. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang and C.-S. Hsu, J. Am. Chem. Soc., 2010, 132, 4887-4893.
    31. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23, 1679-1683.
    32. S. K. Hau, H.-L. Yip, J. Zou and A. K. Y. Jen, Org. Electron., 2009, 10, 1401-1407.
    33. S. K. Hau, H.-L. Yip and A. K. Y. Jen, Polymer Reviews, 2010, 50, 474-510.
    34. D. Liu and T. L. Kelly, Nature Photonics, 2013, 8, 133-138.
    35. W. Qin, X. Xu, D. Liu, C. Ma, L. Yang, S. Yin, F. Zhang and J. Wei, Journal of Renewable and Sustainable Energy, 2013, 5, 053106.
    36. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai, J. R. Reynolds and F. So, Nature Photonics, 2011, 6, 115-120.
    37. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and N. Mathews, Chem Commun (Camb), 2013, 49, 11089-11091.
    38. J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo and Q. Meng, Chem Commun (Camb), 2014, 50, 13381-13384.
    39. H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du and T. Ma, J. Phys. Chem. C, 2015, 119, 4600-4605.
    40. J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis and T. L. Kelly, Chem. Mater., 2015, 27, 4229-4236.
    41. Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip and S. W. Tsang, ACS Appl Mater Interfaces, 2015, 7, 19986-19993.
    42. B. A. Courtright and S. A. Jenekhe, ACS Appl Mater Interfaces, 2015, 7, 26167-26175.
    43. X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong and G. E. Jabbour, Org. Electron., 2014, 15, 2387-2394.
    44. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganäs and F. Zhang, Sol. Energy Mater. Sol. Cells, 2009, 93, 497-500.
    45. H. Kang, S. Hong, J. Lee and K. Lee, Adv. Mater., 2012, 24, 3005-3009, 2938.
    46. J. W. Shim, H. Cheun, J. Meyer, C. Fuentes-Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn and B. Kippelen, Appl. Phys. Lett., 2012, 101, 073303.
    47. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
    48. S. Woo, W. Hyun Kim, H. Kim, Y. Yi, H.-K. Lyu and Y. Kim, Advanced Energy Materials, 2014, 4, n/a-n/a.
    49. Y.-H. Kim, T.-H. Han, H. Cho, S.-Y. Min, C.-L. Lee and T.-W. Lee, Adv. Funct. Mater., 2014, 24, 3808-3814.
    50. X. Yu, X. Yu, J. Zhang, D. Zhang, H. Cai and Y. Zhao, RSC Adv., 2015, 5, 58966-58972.
    51. H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Adv. Mater., 2008, 20, 2376-2382.
    52. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li and H. Chen, J. Am. Chem. Soc., 2015, 137, 2674-2679.
    53. B. Li, Y. Chen, Z. Liang, D. Gao and W. Huang, RSC Adv., 2015, 5, 94290-94295.
    54. N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M. S. Aida and M. Jacquet, Appl. Surf. Sci., 2006, 252, 5594-5597.
    55. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater., 2010, 20, 561-572.
    56. S. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys., 1998, 84, 2287-2294.

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE